/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. cons : [o * o] --> o if : [o * o] --> o iff : [o * o] --> o intersect!450ii!450in : [o * o] --> o intersect!450ii!450out : [] --> o nil : [] --> o p : [o] --> o reduce!450ii!450in : [o * o] --> o reduce!450ii!450out : [] --> o sequent : [o * o] --> o tautology!450i!450in : [o] --> o tautology!450i!450out : [] --> o u!4501!4501 : [o] --> o u!45010!4501 : [o] --> o u!45011!4501 : [o] --> o u!45012!4501 : [o * o * o * o * o] --> o u!45012!4502 : [o] --> o u!45013!4501 : [o] --> o u!45014!4501 : [o] --> o u!45015!4501 : [o] --> o u!45016!4501 : [o] --> o u!4502!4501 : [o] --> o u!4503!4501 : [o] --> o u!4504!4501 : [o] --> o u!4505!4501 : [o] --> o u!4506!4501 : [o * o * o * o * o] --> o u!4506!4502 : [o] --> o u!4507!4501 : [o] --> o u!4508!4501 : [o] --> o u!4509!4501 : [o] --> o x!4502a : [o * o] --> o x!4502b : [o * o] --> o x!4502d : [o] --> o intersect!450ii!450in(cons(X, Y), cons(X, Z)) => intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) => u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) => intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) => u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) => intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) => u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) => u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) => u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) => u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) => u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) => u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) => u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) => u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) => u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) => u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) => u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) => u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) => u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) => u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) => u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) => reduce!450ii!450out tautology!450i!450in(X) => u!45016!4501(reduce!450ii!450in(sequent(nil, cons(X, nil)), sequent(nil, nil))) u!45016!4501(reduce!450ii!450out) => tautology!450i!450out We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: 0] intersect!450ii!450in#(X, cons(Y, Z)) =#> u!4501!4501#(intersect!450ii!450in(X, Z)) 1] intersect!450ii!450in#(X, cons(Y, Z)) =#> intersect!450ii!450in#(X, Z) 2] intersect!450ii!450in#(cons(X, Y), Z) =#> u!4502!4501#(intersect!450ii!450in(Y, Z)) 3] intersect!450ii!450in#(cons(X, Y), Z) =#> intersect!450ii!450in#(Y, Z) 4] reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> u!4503!4501#(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) 5] reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) 6] reduce!450ii!450in#(sequent(cons(iff(X, Y), Z), U), V) =#> u!4504!4501#(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) 7] reduce!450ii!450in#(sequent(cons(iff(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V) 8] reduce!450ii!450in#(sequent(cons(x!4502a(X, Y), Z), U), V) =#> u!4505!4501#(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) 9] reduce!450ii!450in#(sequent(cons(x!4502a(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, cons(Y, Z)), U), V) 10] reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) 11] reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, Z), U), V) 12] u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> u!4506!4502#(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) 13] u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(cons(X, Y), Z), U) 14] reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> u!4507!4501#(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) 15] reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) 16] reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> u!4508!4501#(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) 17] reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) 18] reduce!450ii!450in#(sequent(X, cons(iff(Y, Z), U)), V) =#> u!4509!4501#(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) 19] reduce!450ii!450in#(sequent(X, cons(iff(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V) 20] reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> u!45010!4501#(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) 21] reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) 22] reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) =#> u!45011!4501#(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) 23] reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) 24] reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) =#> u!45012!4501#(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) 25] reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, U)), V) 26] u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) =#> u!45012!4502#(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) 27] u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(X, cons(Y, Z)), U) 28] reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> u!45013!4501#(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) 29] reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) 30] reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> u!45014!4501#(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) 31] reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) 32] reduce!450ii!450in#(sequent(nil, nil), sequent(X, Y)) =#> u!45015!4501#(intersect!450ii!450in(X, Y)) 33] reduce!450ii!450in#(sequent(nil, nil), sequent(X, Y)) =#> intersect!450ii!450in#(X, Y) 34] tautology!450i!450in#(X) =#> u!45016!4501#(reduce!450ii!450in(sequent(nil, cons(X, nil)), sequent(nil, nil))) 35] tautology!450i!450in#(X) =#> reduce!450ii!450in#(sequent(nil, cons(X, nil)), sequent(nil, nil)) Rules R_0: intersect!450ii!450in(cons(X, Y), cons(X, Z)) => intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) => u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) => intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) => u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) => intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) => u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) => u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) => u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) => u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) => u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) => u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) => u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) => u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) => u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) => u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) => u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) => u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) => u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) => u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) => u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) => reduce!450ii!450out tautology!450i!450in(X) => u!45016!4501(reduce!450ii!450in(sequent(nil, cons(X, nil)), sequent(nil, nil))) u!45016!4501(reduce!450ii!450out) => tautology!450i!450out Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2, 3 * 2 : * 3 : 0, 1, 2, 3 * 4 : * 5 : 10, 11, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29 * 6 : * 7 : 8, 9, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29 * 8 : * 9 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29 * 10 : 12, 13 * 11 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29 * 12 : * 13 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29 * 14 : * 15 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31 * 16 : * 17 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 22, 23 * 18 : * 19 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 25 * 20 : * 21 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33 * 22 : * 23 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31 * 24 : 26, 27 * 25 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31 * 26 : * 27 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31 * 28 : * 29 : 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29 * 30 : * 31 : 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33 * 32 : * 33 : 0, 1, 2, 3 * 34 : * 35 : 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31 This graph has the following strongly connected components: P_1: intersect!450ii!450in#(X, cons(Y, Z)) =#> intersect!450ii!450in#(X, Z) intersect!450ii!450in#(cons(X, Y), Z) =#> intersect!450ii!450in#(Y, Z) P_2: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(iff(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502a(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, cons(Y, Z)), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(X, cons(iff(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) =#> u!45012!4501#(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, U)), V) u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(X, cons(Y, Z)), U) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_2, R_0, minimal, all) is finite. We consider the dependency pair problem (P_2, R_0, minimal, all). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_2, R_0) are: intersect!450ii!450in(cons(X, Y), cons(X, Z)) => intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) => u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) => intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) => u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) => intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) => u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) => u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) => u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) => u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) => u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) => u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) => u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) => u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) => u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) => u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) => u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) => u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) => u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) => u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) => u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) => reduce!450ii!450out It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(iff(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502a(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(X, cons(Y, Z)), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >? u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) >? reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) >? reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(X, cons(iff(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) >? reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) >? u!45012!4501#(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(Y, U)), V) u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) >? reduce!450ii!450in#(sequent(X, cons(Y, Z)), U) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) >? reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >? reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) intersect!450ii!450in(cons(X, Y), cons(X, Z)) >= intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) >= u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) >= intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) >= u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) >= intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) >= u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) >= u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) >= u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) >= u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) >= u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) >= u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) >= u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) >= u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) >= u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) >= u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) >= u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) >= u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) >= u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >= u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) >= u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) >= reduce!450ii!450out We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: u!45012!4501#(x_1,x_2,x_3,x_4,x_5) = u!45012!4501#(x_2x_3,x_4,x_5) u!4506!4501#(x_1,x_2,x_3,x_4,x_5) = u!4506!4501#(x_2x_3,x_4,x_5) This leaves the following ordering requirements: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(iff(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502a(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(X, cons(Y, Z)), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >= u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) >= reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) >= reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) >= reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(X, cons(iff(Y, Z), U)), V) >= reduce!450ii!450in#(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) >= reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) >= reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) > u!45012!4501#(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) reduce!450ii!450in#(sequent(X, cons(x!4502a(Y, Z), U)), V) >= reduce!450ii!450in#(sequent(X, cons(Y, U)), V) u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) >= reduce!450ii!450in#(sequent(X, cons(Y, Z)), U) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) >= reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >= reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) The following interpretation satisfies the requirements: cons = \y0y1.y0 + y1 if = \y0y1.y0 + y1 iff = \y0y1.3 + 3y0 + 3y1 intersect!450ii!450in = \y0y1.0 intersect!450ii!450out = 0 nil = 0 p = \y0.0 reduce!450ii!450in = \y0y1.0 reduce!450ii!450in# = \y0y1.y0 reduce!450ii!450out = 0 sequent = \y0y1.y0 + y1 u!4501!4501 = \y0.0 u!45010!4501 = \y0.0 u!45011!4501 = \y0.0 u!45012!4501 = \y0y1y2y3y4.0 u!45012!4501# = \y0y1y2y3y4.y1 + y2 + y3 u!45012!4502 = \y0.0 u!45013!4501 = \y0.0 u!45014!4501 = \y0.0 u!45015!4501 = \y0.0 u!4502!4501 = \y0.0 u!4503!4501 = \y0.0 u!4504!4501 = \y0.0 u!4505!4501 = \y0.0 u!4506!4501 = \y0y1y2y3y4.0 u!4506!4501# = \y0y1y2y3y4.y1 + y2 + y3 u!4506!4502 = \y0.0 u!4507!4501 = \y0.0 u!4508!4501 = \y0.0 u!4509!4501 = \y0.0 x!4502a = \y0y1.2 + y0 + 2y1 x!4502b = \y0y1.y0 + y1 x!4502d = \y0.y0 Using this interpretation, the requirements translate to: [[reduce!450ii!450in#(sequent(cons(if(_x0, _x1), _x2), _x3), _x4)]] = x0 + x1 + x2 + x3 >= x0 + x1 + x2 + x3 = [[reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(_x1), _x0), _x2), _x3), _x4)]] [[reduce!450ii!450in#(sequent(cons(iff(_x0, _x1), _x2), _x3), _x4)]] = 3 + x2 + x3 + 3x0 + 3x1 > 2 + x2 + x3 + 3x0 + 3x1 = [[reduce!450ii!450in#(sequent(cons(x!4502a(if(_x0, _x1), if(_x1, _x0)), _x2), _x3), _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502a(_x0, _x1), _x2), _x3), _x4)]] = 2 + x0 + x2 + x3 + 2x1 > x0 + x1 + x2 + x3 = [[reduce!450ii!450in#(sequent(cons(_x0, cons(_x1, _x2)), _x3), _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502b(_x0, _x1), _x2), _x3), _x4)]] = x0 + x1 + x2 + x3 >= x1 + x2 + x3 = [[u!4506!4501#(reduce!450ii!450in(sequent(cons(_x0, _x2), _x3), _x4), _x1, _x2, _x3, _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502b(_x0, _x1), _x2), _x3), _x4)]] = x0 + x1 + x2 + x3 >= x0 + x2 + x3 = [[reduce!450ii!450in#(sequent(cons(_x0, _x2), _x3), _x4)]] [[u!4506!4501#(reduce!450ii!450out, _x0, _x1, _x2, _x3)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(cons(_x0, _x1), _x2), _x3)]] [[reduce!450ii!450in#(sequent(cons(x!4502d(_x0), _x1), _x2), _x3)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(_x1, cons(_x0, _x2)), _x3)]] [[reduce!450ii!450in#(sequent(_x0, cons(if(_x1, _x2), _x3)), _x4)]] = x0 + x1 + x2 + x3 >= x0 + x1 + x2 + x3 = [[reduce!450ii!450in#(sequent(_x0, cons(x!4502b(x!4502d(_x2), _x1), _x3)), _x4)]] [[reduce!450ii!450in#(sequent(_x0, cons(iff(_x1, _x2), _x3)), _x4)]] = 3 + x0 + x3 + 3x1 + 3x2 > 2 + x0 + x3 + 3x1 + 3x2 = [[reduce!450ii!450in#(sequent(_x0, cons(x!4502a(if(_x1, _x2), if(_x2, _x1)), _x3)), _x4)]] [[reduce!450ii!450in#(sequent(cons(p(_x0), _x1), _x2), sequent(_x3, _x4))]] = x1 + x2 >= x1 + x2 = [[reduce!450ii!450in#(sequent(_x1, _x2), sequent(cons(p(_x0), _x3), _x4))]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502b(_x1, _x2), _x3)), _x4)]] = x0 + x1 + x2 + x3 >= x0 + x1 + x2 + x3 = [[reduce!450ii!450in#(sequent(_x0, cons(_x1, cons(_x2, _x3))), _x4)]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502a(_x1, _x2), _x3)), _x4)]] = 2 + x0 + x1 + x3 + 2x2 > x0 + x2 + x3 = [[u!45012!4501#(reduce!450ii!450in(sequent(_x0, cons(_x1, _x3)), _x4), _x0, _x2, _x3, _x4)]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502a(_x1, _x2), _x3)), _x4)]] = 2 + x0 + x1 + x3 + 2x2 > x0 + x1 + x3 = [[reduce!450ii!450in#(sequent(_x0, cons(_x1, _x3)), _x4)]] [[u!45012!4501#(reduce!450ii!450out, _x0, _x1, _x2, _x3)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(_x0, cons(_x1, _x2)), _x3)]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502d(_x1), _x2)), _x3)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(cons(_x1, _x0), _x2), _x3)]] [[reduce!450ii!450in#(sequent(nil, cons(p(_x0), _x1)), sequent(_x2, _x3))]] = x1 >= x1 = [[reduce!450ii!450in#(sequent(nil, _x1), sequent(_x2, cons(p(_x0), _x3)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_2, R_0, minimal, all) by (P_3, R_0, minimal, all), where P_3 consists of: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) u!45012!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(X, cons(Y, Z)), U) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_3, R_0, minimal, all) is finite. We consider the dependency pair problem (P_3, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1, 2, 5, 7, 9 * 1 : 3 * 2 : 0, 1, 2, 4, 5, 6, 7, 9 * 3 : 0, 1, 2, 4, 5, 6, 7, 9 * 4 : 0, 1, 2, 4, 5, 6, 7, 9, 10 * 5 : 0, 1, 2, 4, 6, 7 * 6 : 0, 1, 2, 4, 5, 6, 7, 9, 10 * 7 : 0, 1, 2, 4, 5, 6, 7, 9, 10 * 8 : 0, 1, 2, 4, 5, 6, 7, 9, 10 * 9 : 0, 1, 2, 4, 5, 6, 7, 9 * 10 : 5, 7, 9, 10 This graph has the following strongly connected components: P_4: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_3, R_0, m, f) by (P_4, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_4, R_0, minimal, all) is finite. We consider the dependency pair problem (P_4, R_0, minimal, all). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_4, R_0) are: intersect!450ii!450in(cons(X, Y), cons(X, Z)) => intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) => u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) => intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) => u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) => intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) => u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) => u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) => u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) => u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) => u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) => u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) => u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) => u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) => u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) => u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) => u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) => u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) => u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) => u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) => reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) => u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) => reduce!450ii!450out It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >? u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) >? reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) >? reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) >? reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) >? reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >? reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) intersect!450ii!450in(cons(X, Y), cons(X, Z)) >= intersect!450ii!450out intersect!450ii!450in(X, cons(Y, Z)) >= u!4501!4501(intersect!450ii!450in(X, Z)) u!4501!4501(intersect!450ii!450out) >= intersect!450ii!450out intersect!450ii!450in(cons(X, Y), Z) >= u!4502!4501(intersect!450ii!450in(Y, Z)) u!4502!4501(intersect!450ii!450out) >= intersect!450ii!450out reduce!450ii!450in(sequent(cons(if(X, Y), Z), U), V) >= u!4503!4501(reduce!450ii!450in(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V)) u!4503!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(iff(X, Y), Z), U), V) >= u!4504!4501(reduce!450ii!450in(sequent(cons(x!4502a(if(X, Y), if(Y, X)), Z), U), V)) u!4504!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502a(X, Y), Z), U), V) >= u!4505!4501(reduce!450ii!450in(sequent(cons(X, cons(Y, Z)), U), V)) u!4505!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502b(X, Y), Z), U), V) >= u!4506!4501(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) u!4506!4501(reduce!450ii!450out, X, Y, Z, U) >= u!4506!4502(reduce!450ii!450in(sequent(cons(X, Y), Z), U)) u!4506!4502(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(x!4502d(X), Y), Z), U) >= u!4507!4501(reduce!450ii!450in(sequent(Y, cons(X, Z)), U)) u!4507!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(if(Y, Z), U)), V) >= u!4508!4501(reduce!450ii!450in(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V)) u!4508!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(iff(Y, Z), U)), V) >= u!4509!4501(reduce!450ii!450in(sequent(X, cons(x!4502a(if(Y, Z), if(Z, Y)), U)), V)) u!4509!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(cons(p(X), Y), Z), sequent(U, V)) >= u!45010!4501(reduce!450ii!450in(sequent(Y, Z), sequent(cons(p(X), U), V))) u!45010!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502b(Y, Z), U)), V) >= u!45011!4501(reduce!450ii!450in(sequent(X, cons(Y, cons(Z, U))), V)) u!45011!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502a(Y, Z), U)), V) >= u!45012!4501(reduce!450ii!450in(sequent(X, cons(Y, U)), V), X, Z, U, V) u!45012!4501(reduce!450ii!450out, X, Y, Z, U) >= u!45012!4502(reduce!450ii!450in(sequent(X, cons(Y, Z)), U)) u!45012!4502(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(X, cons(x!4502d(Y), Z)), U) >= u!45013!4501(reduce!450ii!450in(sequent(cons(Y, X), Z), U)) u!45013!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >= u!45014!4501(reduce!450ii!450in(sequent(nil, Y), sequent(Z, cons(p(X), U)))) u!45014!4501(reduce!450ii!450out) >= reduce!450ii!450out reduce!450ii!450in(sequent(nil, nil), sequent(X, Y)) >= u!45015!4501(intersect!450ii!450in(X, Y)) u!45015!4501(intersect!450ii!450out) >= reduce!450ii!450out We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: u!4506!4501#(x_1,x_2,x_3,x_4,x_5) = u!4506!4501#(x_2x_3,x_4,x_5) This leaves the following ordering requirements: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >= u!4506!4501#(reduce!450ii!450in(sequent(cons(X, Z), U), V), Y, Z, U, V) reduce!450ii!450in#(sequent(cons(x!4502b(X, Y), Z), U), V) >= reduce!450ii!450in#(sequent(cons(X, Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) >= reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) >= reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) >= reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) >= reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502b(Y, Z), U)), V) > reduce!450ii!450in#(sequent(X, cons(Y, cons(Z, U))), V) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) >= reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >= reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) The following interpretation satisfies the requirements: cons = \y0y1.y0 + y1 if = \y0y1.2 + y0 + 2y1 iff = \y0y1.3 intersect!450ii!450in = \y0y1.0 intersect!450ii!450out = 0 nil = 0 p = \y0.0 reduce!450ii!450in = \y0y1.0 reduce!450ii!450in# = \y0y1.y0 reduce!450ii!450out = 0 sequent = \y0y1.y1 + 2y0 u!4501!4501 = \y0.0 u!45010!4501 = \y0.0 u!45011!4501 = \y0.0 u!45012!4501 = \y0y1y2y3y4.0 u!45012!4502 = \y0.0 u!45013!4501 = \y0.0 u!45014!4501 = \y0.0 u!45015!4501 = \y0.0 u!4502!4501 = \y0.0 u!4503!4501 = \y0.0 u!4504!4501 = \y0.0 u!4505!4501 = \y0.0 u!4506!4501 = \y0y1y2y3y4.0 u!4506!4501# = \y0y1y2y3y4.y3 + 2y1 + 2y2 u!4506!4502 = \y0.0 u!4507!4501 = \y0.0 u!4508!4501 = \y0.0 u!4509!4501 = \y0.0 x!4502a = \y0y1.0 x!4502b = \y0y1.2 + y0 + y1 x!4502d = \y0.2y0 Using this interpretation, the requirements translate to: [[reduce!450ii!450in#(sequent(cons(if(_x0, _x1), _x2), _x3), _x4)]] = 4 + x3 + 2x0 + 2x2 + 4x1 >= 4 + x3 + 2x0 + 2x2 + 4x1 = [[reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(_x1), _x0), _x2), _x3), _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502b(_x0, _x1), _x2), _x3), _x4)]] = 4 + x3 + 2x0 + 2x1 + 2x2 > x3 + 2x1 + 2x2 = [[u!4506!4501#(reduce!450ii!450in(sequent(cons(_x0, _x2), _x3), _x4), _x1, _x2, _x3, _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502b(_x0, _x1), _x2), _x3), _x4)]] = 4 + x3 + 2x0 + 2x1 + 2x2 > x3 + 2x0 + 2x2 = [[reduce!450ii!450in#(sequent(cons(_x0, _x2), _x3), _x4)]] [[u!4506!4501#(reduce!450ii!450out, _x0, _x1, _x2, _x3)]] = x2 + 2x0 + 2x1 >= x2 + 2x0 + 2x1 = [[reduce!450ii!450in#(sequent(cons(_x0, _x1), _x2), _x3)]] [[reduce!450ii!450in#(sequent(cons(x!4502d(_x0), _x1), _x2), _x3)]] = x2 + 2x1 + 4x0 >= x0 + x2 + 2x1 = [[reduce!450ii!450in#(sequent(_x1, cons(_x0, _x2)), _x3)]] [[reduce!450ii!450in#(sequent(_x0, cons(if(_x1, _x2), _x3)), _x4)]] = 2 + x1 + x3 + 2x0 + 2x2 >= 2 + x1 + x3 + 2x0 + 2x2 = [[reduce!450ii!450in#(sequent(_x0, cons(x!4502b(x!4502d(_x2), _x1), _x3)), _x4)]] [[reduce!450ii!450in#(sequent(cons(p(_x0), _x1), _x2), sequent(_x3, _x4))]] = x2 + 2x1 >= x2 + 2x1 = [[reduce!450ii!450in#(sequent(_x1, _x2), sequent(cons(p(_x0), _x3), _x4))]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502b(_x1, _x2), _x3)), _x4)]] = 2 + x1 + x2 + x3 + 2x0 > x1 + x2 + x3 + 2x0 = [[reduce!450ii!450in#(sequent(_x0, cons(_x1, cons(_x2, _x3))), _x4)]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502d(_x1), _x2)), _x3)]] = x2 + 2x0 + 2x1 >= x2 + 2x0 + 2x1 = [[reduce!450ii!450in#(sequent(cons(_x1, _x0), _x2), _x3)]] [[reduce!450ii!450in#(sequent(nil, cons(p(_x0), _x1)), sequent(_x2, _x3))]] = x1 >= x1 = [[reduce!450ii!450in#(sequent(nil, _x1), sequent(_x2, cons(p(_x0), _x3)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_4, R_0, minimal, all) by (P_5, R_0, minimal, all), where P_5 consists of: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) u!4506!4501#(reduce!450ii!450out, X, Y, Z, U) =#> reduce!450ii!450in#(sequent(cons(X, Y), Z), U) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_5, R_0, minimal, all) is finite. We consider the dependency pair problem (P_5, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 3, 5 * 1 : 0, 2, 3, 4, 5 * 2 : 0, 2, 3, 4, 5, 6 * 3 : 0, 2, 4 * 4 : 0, 2, 3, 4, 5, 6 * 5 : 0, 2, 3, 4, 5 * 6 : 3, 5, 6 This graph has the following strongly connected components: P_6: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) =#> reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) =#> reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) =#> reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) =#> reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) =#> reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) =#> reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_5, R_0, m, f) by (P_6, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, all) and (P_6, R_0, minimal, all) is finite. We consider the dependency pair problem (P_6, R_0, minimal, all). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. (P_6, R_0) has no usable rules. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: reduce!450ii!450in#(sequent(cons(if(X, Y), Z), U), V) >? reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(Y), X), Z), U), V) reduce!450ii!450in#(sequent(cons(x!4502d(X), Y), Z), U) >? reduce!450ii!450in#(sequent(Y, cons(X, Z)), U) reduce!450ii!450in#(sequent(X, cons(if(Y, Z), U)), V) >? reduce!450ii!450in#(sequent(X, cons(x!4502b(x!4502d(Z), Y), U)), V) reduce!450ii!450in#(sequent(cons(p(X), Y), Z), sequent(U, V)) >? reduce!450ii!450in#(sequent(Y, Z), sequent(cons(p(X), U), V)) reduce!450ii!450in#(sequent(X, cons(x!4502d(Y), Z)), U) >? reduce!450ii!450in#(sequent(cons(Y, X), Z), U) reduce!450ii!450in#(sequent(nil, cons(p(X), Y)), sequent(Z, U)) >? reduce!450ii!450in#(sequent(nil, Y), sequent(Z, cons(p(X), U))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.y0 + y1 if = \y0y1.3 nil = 0 p = \y0.1 reduce!450ii!450in# = \y0y1.y0 sequent = \y0y1.y0 + y1 x!4502b = \y0y1.0 x!4502d = \y0.3 + y0 Using this interpretation, the requirements translate to: [[reduce!450ii!450in#(sequent(cons(if(_x0, _x1), _x2), _x3), _x4)]] = 3 + x2 + x3 > x2 + x3 = [[reduce!450ii!450in#(sequent(cons(x!4502b(x!4502d(_x1), _x0), _x2), _x3), _x4)]] [[reduce!450ii!450in#(sequent(cons(x!4502d(_x0), _x1), _x2), _x3)]] = 3 + x0 + x1 + x2 > x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(_x1, cons(_x0, _x2)), _x3)]] [[reduce!450ii!450in#(sequent(_x0, cons(if(_x1, _x2), _x3)), _x4)]] = 3 + x0 + x3 > x0 + x3 = [[reduce!450ii!450in#(sequent(_x0, cons(x!4502b(x!4502d(_x2), _x1), _x3)), _x4)]] [[reduce!450ii!450in#(sequent(cons(p(_x0), _x1), _x2), sequent(_x3, _x4))]] = 1 + x1 + x2 > x1 + x2 = [[reduce!450ii!450in#(sequent(_x1, _x2), sequent(cons(p(_x0), _x3), _x4))]] [[reduce!450ii!450in#(sequent(_x0, cons(x!4502d(_x1), _x2)), _x3)]] = 3 + x0 + x1 + x2 > x0 + x1 + x2 = [[reduce!450ii!450in#(sequent(cons(_x1, _x0), _x2), _x3)]] [[reduce!450ii!450in#(sequent(nil, cons(p(_x0), _x1)), sequent(_x2, _x3))]] = 1 + x1 > x1 = [[reduce!450ii!450in#(sequent(nil, _x1), sequent(_x2, cons(p(_x0), _x3)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_6, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, all) is finite. We consider the dependency pair problem (P_1, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(intersect!450ii!450in#) = 2 Thus, we can orient the dependency pairs as follows: nu(intersect!450ii!450in#(X, cons(Y, Z))) = cons(Y, Z) |> Z = nu(intersect!450ii!450in#(X, Z)) nu(intersect!450ii!450in#(cons(X, Y), Z)) = Z = Z = nu(intersect!450ii!450in#(Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by (P_7, R_0, minimal, f), where P_7 contains: intersect!450ii!450in#(cons(X, Y), Z) =#> intersect!450ii!450in#(Y, Z) Thus, the original system is terminating if (P_7, R_0, minimal, all) is finite. We consider the dependency pair problem (P_7, R_0, minimal, all). We apply the subterm criterion with the following projection function: nu(intersect!450ii!450in#) = 1 Thus, we can orient the dependency pairs as follows: nu(intersect!450ii!450in#(cons(X, Y), Z)) = cons(X, Y) |> Y = nu(intersect!450ii!450in#(Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_7, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.