/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 3 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [EQUIVALENT, 0 ms] (31) QDP (32) DependencyGraphProof [EQUIVALENT, 0 ms] (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) TransformationProof [EQUIVALENT, 0 ms] (39) QDP (40) UsableRulesProof [EQUIVALENT, 0 ms] (41) QDP (42) QReductionProof [EQUIVALENT, 0 ms] (43) QDP (44) NonInfProof [EQUIVALENT, 10 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The TRS R 2 is cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) The signature Sigma is {cond1_3, cond2_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x, y) -> COND2(gr(x, y), x, y) COND1(true, x, y) -> GR(x, y) COND2(true, x, y) -> COND1(neq(x, 0), y, y) COND2(true, x, y) -> NEQ(x, 0) COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) COND2(false, x, y) -> NEQ(x, 0) COND2(false, x, y) -> P(x) GR(s(x), s(y)) -> GR(x, y) NEQ(s(x), s(y)) -> NEQ(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) R is empty. The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *NEQ(s(x), s(y)) -> NEQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GR(s(x), s(y)) -> GR(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND1(neq(x, 0), y, y) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(neq(x, 0), y, y) cond2(false, x, y) -> cond1(neq(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND1(neq(x, 0), y, y) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND1(neq(x, 0), y, y) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND2(true, x, y) -> COND1(neq(x, 0), y, y) at position [0] we obtained the following new rules [LPAR04]: (COND2(true, 0, y1) -> COND1(false, y1, y1),COND2(true, 0, y1) -> COND1(false, y1, y1)) (COND2(true, s(x0), y1) -> COND1(true, y1, y1),COND2(true, s(x0), y1) -> COND1(true, y1, y1)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) COND2(true, 0, y1) -> COND1(false, y1, y1) COND2(true, s(x0), y1) -> COND1(true, y1, y1) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(true, s(x0), y1) -> COND1(true, y1, y1) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND2(false, x, y) -> COND1(neq(x, 0), p(x), y) at position [0] we obtained the following new rules [LPAR04]: (COND2(false, 0, y1) -> COND1(false, p(0), y1),COND2(false, 0, y1) -> COND1(false, p(0), y1)) (COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1),COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1)) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND2(false, 0, y1) -> COND1(false, p(0), y1) COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1) The TRS R consists of the following rules: p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(x1)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1) The TRS R consists of the following rules: p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(false, s(x0), y1) -> COND1(true, p(s(x0)), y1) at position [1] we obtained the following new rules [LPAR04]: (COND2(false, s(x0), y1) -> COND1(true, x0, y1),COND2(false, s(x0), y1) -> COND1(true, x0, y1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, x0, y1) The TRS R consists of the following rules: p(s(x)) -> x gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, x0, y1) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(0) p(s(x0)) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, x0, y1) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair COND2(true, s(x0), y1) -> COND1(true, y1, y1) the following chains were created: *We consider the chain COND1(true, x2, x3) -> COND2(gr(x2, x3), x2, x3), COND2(true, s(x4), x5) -> COND1(true, x5, x5) which results in the following constraint: (1) (COND2(gr(x2, x3), x2, x3)=COND2(true, s(x4), x5) ==> COND2(true, s(x4), x5)_>=_COND1(true, x5, x5)) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (s(x4)=x26 & gr(x26, x3)=true ==> COND2(true, s(x4), x3)_>=_COND1(true, x3, x3)) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gr(x26, x3)=true which results in the following new constraints: (3) (true=true & s(x4)=s(x28) ==> COND2(true, s(x4), 0)_>=_COND1(true, 0, 0)) (4) (gr(x30, x29)=true & s(x4)=s(x30) & (\/x31:gr(x30, x29)=true & s(x31)=x30 ==> COND2(true, s(x31), x29)_>=_COND1(true, x29, x29)) ==> COND2(true, s(x4), s(x29))_>=_COND1(true, s(x29), s(x29))) We simplified constraint (3) using rules (I), (II), (IV) which results in the following new constraint: (5) (COND2(true, s(x4), 0)_>=_COND1(true, 0, 0)) We simplified constraint (4) using rules (I), (II), (III), (IV) which results in the following new constraint: (6) (gr(x30, x29)=true ==> COND2(true, s(x30), s(x29))_>=_COND1(true, s(x29), s(x29))) We simplified constraint (6) using rule (V) (with possible (I) afterwards) using induction on gr(x30, x29)=true which results in the following new constraints: (7) (true=true ==> COND2(true, s(s(x33)), s(0))_>=_COND1(true, s(0), s(0))) (8) (gr(x35, x34)=true & (gr(x35, x34)=true ==> COND2(true, s(x35), s(x34))_>=_COND1(true, s(x34), s(x34))) ==> COND2(true, s(s(x35)), s(s(x34)))_>=_COND1(true, s(s(x34)), s(s(x34)))) We simplified constraint (7) using rules (I), (II) which results in the following new constraint: (9) (COND2(true, s(s(x33)), s(0))_>=_COND1(true, s(0), s(0))) We simplified constraint (8) using rule (VI) where we applied the induction hypothesis (gr(x35, x34)=true ==> COND2(true, s(x35), s(x34))_>=_COND1(true, s(x34), s(x34))) with sigma = [ ] which results in the following new constraint: (10) (COND2(true, s(x35), s(x34))_>=_COND1(true, s(x34), s(x34)) ==> COND2(true, s(s(x35)), s(s(x34)))_>=_COND1(true, s(s(x34)), s(s(x34)))) For Pair COND1(true, x, y) -> COND2(gr(x, y), x, y) the following chains were created: *We consider the chain COND2(true, s(x8), x9) -> COND1(true, x9, x9), COND1(true, x10, x11) -> COND2(gr(x10, x11), x10, x11) which results in the following constraint: (1) (COND1(true, x9, x9)=COND1(true, x10, x11) ==> COND1(true, x10, x11)_>=_COND2(gr(x10, x11), x10, x11)) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (COND1(true, x9, x9)_>=_COND2(gr(x9, x9), x9, x9)) *We consider the chain COND2(false, s(x14), x15) -> COND1(true, x14, x15), COND1(true, x16, x17) -> COND2(gr(x16, x17), x16, x17) which results in the following constraint: (1) (COND1(true, x14, x15)=COND1(true, x16, x17) ==> COND1(true, x16, x17)_>=_COND2(gr(x16, x17), x16, x17)) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (COND1(true, x14, x15)_>=_COND2(gr(x14, x15), x14, x15)) For Pair COND2(false, s(x0), y1) -> COND1(true, x0, y1) the following chains were created: *We consider the chain COND1(true, x20, x21) -> COND2(gr(x20, x21), x20, x21), COND2(false, s(x22), x23) -> COND1(true, x22, x23) which results in the following constraint: (1) (COND2(gr(x20, x21), x20, x21)=COND2(false, s(x22), x23) ==> COND2(false, s(x22), x23)_>=_COND1(true, x22, x23)) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (s(x22)=x36 & gr(x36, x21)=false ==> COND2(false, s(x22), x21)_>=_COND1(true, x22, x21)) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gr(x36, x21)=false which results in the following new constraints: (3) (false=false & s(x22)=0 ==> COND2(false, s(x22), x37)_>=_COND1(true, x22, x37)) (4) (gr(x40, x39)=false & s(x22)=s(x40) & (\/x41:gr(x40, x39)=false & s(x41)=x40 ==> COND2(false, s(x41), x39)_>=_COND1(true, x41, x39)) ==> COND2(false, s(x22), s(x39))_>=_COND1(true, x22, s(x39))) We solved constraint (3) using rules (I), (II).We simplified constraint (4) using rules (I), (II), (III), (IV) which results in the following new constraint: (5) (gr(x40, x39)=false ==> COND2(false, s(x40), s(x39))_>=_COND1(true, x40, s(x39))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on gr(x40, x39)=false which results in the following new constraints: (6) (false=false ==> COND2(false, s(0), s(x42))_>=_COND1(true, 0, s(x42))) (7) (gr(x45, x44)=false & (gr(x45, x44)=false ==> COND2(false, s(x45), s(x44))_>=_COND1(true, x45, s(x44))) ==> COND2(false, s(s(x45)), s(s(x44)))_>=_COND1(true, s(x45), s(s(x44)))) We simplified constraint (6) using rules (I), (II) which results in the following new constraint: (8) (COND2(false, s(0), s(x42))_>=_COND1(true, 0, s(x42))) We simplified constraint (7) using rule (VI) where we applied the induction hypothesis (gr(x45, x44)=false ==> COND2(false, s(x45), s(x44))_>=_COND1(true, x45, s(x44))) with sigma = [ ] which results in the following new constraint: (9) (COND2(false, s(x45), s(x44))_>=_COND1(true, x45, s(x44)) ==> COND2(false, s(s(x45)), s(s(x44)))_>=_COND1(true, s(x45), s(s(x44)))) To summarize, we get the following constraints P__>=_ for the following pairs. *COND2(true, s(x0), y1) -> COND1(true, y1, y1) *(COND2(true, s(x4), 0)_>=_COND1(true, 0, 0)) *(COND2(true, s(s(x33)), s(0))_>=_COND1(true, s(0), s(0))) *(COND2(true, s(x35), s(x34))_>=_COND1(true, s(x34), s(x34)) ==> COND2(true, s(s(x35)), s(s(x34)))_>=_COND1(true, s(s(x34)), s(s(x34)))) *COND1(true, x, y) -> COND2(gr(x, y), x, y) *(COND1(true, x9, x9)_>=_COND2(gr(x9, x9), x9, x9)) *(COND1(true, x14, x15)_>=_COND2(gr(x14, x15), x14, x15)) *COND2(false, s(x0), y1) -> COND1(true, x0, y1) *(COND2(false, s(0), s(x42))_>=_COND1(true, 0, s(x42))) *(COND2(false, s(x45), s(x44))_>=_COND1(true, x45, s(x44)) ==> COND2(false, s(s(x45)), s(s(x44)))_>=_COND1(true, s(x45), s(s(x44)))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(COND1(x_1, x_2, x_3)) = -1 + x_1 + x_2 - x_3 POL(COND2(x_1, x_2, x_3)) = -1 - x_1 + x_2 - x_3 POL(c) = -1 POL(false) = 0 POL(gr(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following pairs are in P_>: COND2(true, s(x0), y1) -> COND1(true, y1, y1) COND2(false, s(x0), y1) -> COND1(true, x0, y1) The following pairs are in P_bound: COND2(true, s(x0), y1) -> COND1(true, y1, y1) The following rules are usable: false -> gr(0, x) true -> gr(s(x), 0) gr(x, y) -> gr(s(x), s(y)) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x, y) -> COND2(gr(x, y), x, y) COND2(false, s(x0), y1) -> COND1(true, x0, y1) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *COND2(false, s(x0), y1) -> COND1(true, x0, y1) The graph contains the following edges 2 > 2, 3 >= 3 *COND1(true, x, y) -> COND2(gr(x, y), x, y) The graph contains the following edges 2 >= 2, 3 >= 3 ---------------------------------------- (47) YES