/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 13 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) QDPOrderProof [EQUIVALENT, 63 ms] (16) QDP (17) PisEmptyProof [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(cons(t, l), cons(t', l')) -> AND(eq(t, t'), eq(l, l')) EQ(cons(t, l), cons(t', l')) -> EQ(t, t') EQ(cons(t, l), cons(t', l')) -> EQ(l, l') EQ(var(l), var(l')) -> EQ(l, l') EQ(apply(t, s), apply(t', s')) -> AND(eq(t, t'), eq(s, s')) EQ(apply(t, s), apply(t', s')) -> EQ(t, t') EQ(apply(t, s), apply(t', s')) -> EQ(s, s') EQ(lambda(x, t), lambda(x', t')) -> AND(eq(x, x'), eq(t, t')) EQ(lambda(x, t), lambda(x', t')) -> EQ(x, x') EQ(lambda(x, t), lambda(x', t')) -> EQ(t, t') REN(var(l), var(k), var(l')) -> IF(eq(l, l'), var(k), var(l')) REN(var(l), var(k), var(l')) -> EQ(l, l') REN(x, y, apply(t, s)) -> REN(x, y, t) REN(x, y, apply(t, s)) -> REN(x, y, s) REN(x, y, lambda(z, t)) -> REN(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)) REN(x, y, lambda(z, t)) -> REN(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t) The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(cons(t, l), cons(t', l')) -> EQ(l, l') EQ(cons(t, l), cons(t', l')) -> EQ(t, t') EQ(var(l), var(l')) -> EQ(l, l') EQ(apply(t, s), apply(t', s')) -> EQ(t, t') EQ(apply(t, s), apply(t', s')) -> EQ(s, s') EQ(lambda(x, t), lambda(x', t')) -> EQ(x, x') EQ(lambda(x, t), lambda(x', t')) -> EQ(t, t') The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(cons(t, l), cons(t', l')) -> EQ(l, l') EQ(cons(t, l), cons(t', l')) -> EQ(t, t') EQ(var(l), var(l')) -> EQ(l, l') EQ(apply(t, s), apply(t', s')) -> EQ(t, t') EQ(apply(t, s), apply(t', s')) -> EQ(s, s') EQ(lambda(x, t), lambda(x', t')) -> EQ(x, x') EQ(lambda(x, t), lambda(x', t')) -> EQ(t, t') R is empty. The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(cons(t, l), cons(t', l')) -> EQ(l, l') EQ(cons(t, l), cons(t', l')) -> EQ(t, t') EQ(var(l), var(l')) -> EQ(l, l') EQ(apply(t, s), apply(t', s')) -> EQ(t, t') EQ(apply(t, s), apply(t', s')) -> EQ(s, s') EQ(lambda(x, t), lambda(x', t')) -> EQ(x, x') EQ(lambda(x, t), lambda(x', t')) -> EQ(t, t') R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(cons(t, l), cons(t', l')) -> EQ(l, l') The graph contains the following edges 1 > 1, 2 > 2 *EQ(cons(t, l), cons(t', l')) -> EQ(t, t') The graph contains the following edges 1 > 1, 2 > 2 *EQ(var(l), var(l')) -> EQ(l, l') The graph contains the following edges 1 > 1, 2 > 2 *EQ(apply(t, s), apply(t', s')) -> EQ(t, t') The graph contains the following edges 1 > 1, 2 > 2 *EQ(apply(t, s), apply(t', s')) -> EQ(s, s') The graph contains the following edges 1 > 1, 2 > 2 *EQ(lambda(x, t), lambda(x', t')) -> EQ(x, x') The graph contains the following edges 1 > 1, 2 > 2 *EQ(lambda(x, t), lambda(x', t')) -> EQ(t, t') The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: REN(x, y, apply(t, s)) -> REN(x, y, s) REN(x, y, apply(t, s)) -> REN(x, y, t) REN(x, y, lambda(z, t)) -> REN(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)) REN(x, y, lambda(z, t)) -> REN(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t) The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REN(x, y, apply(t, s)) -> REN(x, y, s) REN(x, y, apply(t, s)) -> REN(x, y, t) REN(x, y, lambda(z, t)) -> REN(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t)) REN(x, y, lambda(z, t)) -> REN(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. REN(x1, x2, x3) = x3 apply(x1, x2) = apply(x1, x2) lambda(x1, x2) = lambda(x2) ren(x1, x2, x3) = ren(x3) var(x1) = var if(x1, x2, x3) = if Knuth-Bendix order [KBO] with precedence:ren_1 > lambda_1 ren_1 > if > var ren_1 > apply_2 and weight map: lambda_1=1 var=1 ren_1=0 apply_2=1 if=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ---------------------------------------- (16) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: and(true, y) -> y and(false, y) -> false eq(nil, nil) -> true eq(cons(t, l), nil) -> false eq(nil, cons(t, l)) -> false eq(cons(t, l), cons(t', l')) -> and(eq(t, t'), eq(l, l')) eq(var(l), var(l')) -> eq(l, l') eq(var(l), apply(t, s)) -> false eq(var(l), lambda(x, t)) -> false eq(apply(t, s), var(l)) -> false eq(apply(t, s), apply(t', s')) -> and(eq(t, t'), eq(s, s')) eq(apply(t, s), lambda(x, t)) -> false eq(lambda(x, t), var(l)) -> false eq(lambda(x, t), apply(t, s)) -> false eq(lambda(x, t), lambda(x', t')) -> and(eq(x, x'), eq(t, t')) if(true, var(k), var(l')) -> var(k) if(false, var(k), var(l')) -> var(l') ren(var(l), var(k), var(l')) -> if(eq(l, l'), var(k), var(l')) ren(x, y, apply(t, s)) -> apply(ren(x, y, t), ren(x, y, s)) ren(x, y, lambda(z, t)) -> lambda(var(cons(x, cons(y, cons(lambda(z, t), nil)))), ren(x, y, ren(z, var(cons(x, cons(y, cons(lambda(z, t), nil)))), t))) The set Q consists of the following terms: and(true, x0) and(false, x0) eq(nil, nil) eq(cons(x0, x1), nil) eq(nil, cons(x0, x1)) eq(cons(x0, x1), cons(x2, x3)) eq(var(x0), var(x1)) eq(var(x0), apply(x1, x2)) eq(var(x0), lambda(x1, x2)) eq(apply(x0, x1), var(x2)) eq(apply(x0, x1), apply(x2, x3)) eq(apply(x0, x1), lambda(x2, x0)) eq(lambda(x0, x1), var(x2)) eq(lambda(x0, x1), apply(x1, x2)) eq(lambda(x0, x1), lambda(x2, x3)) if(true, var(x0), var(x1)) if(false, var(x0), var(x1)) ren(var(x0), var(x1), var(x2)) ren(x0, x1, apply(x2, x3)) ren(x0, x1, lambda(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (18) YES