/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) TransformationProof [EQUIVALENT, 0 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) SemLabProof [SOUND, 186 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) MRRProof [EQUIVALENT, 11 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) QDP (29) MRRProof [EQUIVALENT, 0 ms] (30) QDP (31) PisEmptyProof [EQUIVALENT, 0 ms] (32) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(a, f(f(x, h(y)), a)) F(f(a, x), y) -> F(f(x, h(y)), a) F(f(a, x), y) -> F(x, h(y)) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(x, h(y)) F(f(a, x), y) -> F(f(x, h(y)), a) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(f(a, x), y) -> F(x, h(y)) we obtained the following new rules [LPAR04]: (F(f(a, x0), h(z1)) -> F(x0, h(h(z1))),F(f(a, x0), h(z1)) -> F(x0, h(h(z1)))) (F(f(a, x0), a) -> F(x0, h(a)),F(f(a, x0), a) -> F(x0, h(a))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(f(x, h(y)), a) F(f(a, x0), h(z1)) -> F(x0, h(h(z1))) F(f(a, x0), a) -> F(x0, h(a)) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(f(a, x), y) -> F(f(x, h(y)), a) we obtained the following new rules [LPAR04]: (F(f(a, x0), a) -> F(f(x0, h(a)), a),F(f(a, x0), a) -> F(f(x0, h(a)), a)) (F(f(a, x0), h(h(z1))) -> F(f(x0, h(h(h(z1)))), a),F(f(a, x0), h(h(z1))) -> F(f(x0, h(h(h(z1)))), a)) (F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a),F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a)) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), h(z1)) -> F(x0, h(h(z1))) F(f(a, x0), a) -> F(x0, h(a)) F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(h(z1))) -> F(f(x0, h(h(h(z1)))), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(f(a, x0), h(z1)) -> F(x0, h(h(z1))) we obtained the following new rules [LPAR04]: (F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1)))),F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1))))) (F(f(a, x0), h(a)) -> F(x0, h(h(a))),F(f(a, x0), h(a)) -> F(x0, h(h(a)))) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), a) -> F(x0, h(a)) F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(h(z1))) -> F(f(x0, h(h(h(z1)))), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1)))) F(f(a, x0), h(a)) -> F(x0, h(h(a))) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(f(a, x0), h(h(z1))) -> F(f(x0, h(h(h(z1)))), a) we obtained the following new rules [LPAR04]: (F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a),F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a)) (F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a),F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), a) -> F(x0, h(a)) F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1)))) F(f(a, x0), h(a)) -> F(x0, h(h(a))) F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a) F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(a, x0), a) -> F(x0, h(a)) we obtained the following new rules [LPAR04]: (F(f(a, f(a, y_0)), a) -> F(f(a, y_0), h(a)),F(f(a, f(a, y_0)), a) -> F(f(a, y_0), h(a))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1)))) F(f(a, x0), h(a)) -> F(x0, h(h(a))) F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a) F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a) F(f(a, f(a, y_0)), a) -> F(f(a, y_0), h(a)) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(a, x0), h(h(z1))) -> F(x0, h(h(h(z1)))) we obtained the following new rules [LPAR04]: (F(f(a, f(a, y_0)), h(h(x1))) -> F(f(a, y_0), h(h(h(x1)))),F(f(a, f(a, y_0)), h(h(x1))) -> F(f(a, y_0), h(h(h(x1))))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) F(f(a, x0), h(a)) -> F(x0, h(h(a))) F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a) F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a) F(f(a, f(a, y_0)), a) -> F(f(a, y_0), h(a)) F(f(a, f(a, y_0)), h(h(x1))) -> F(f(a, y_0), h(h(h(x1)))) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(a, x0), h(a)) -> F(x0, h(h(a))) we obtained the following new rules [LPAR04]: (F(f(a, f(a, y_0)), h(a)) -> F(f(a, y_0), h(h(a))),F(f(a, f(a, y_0)), h(a)) -> F(f(a, y_0), h(h(a)))) (F(f(a, f(a, f(a, y_0))), h(a)) -> F(f(a, f(a, y_0)), h(h(a))),F(f(a, f(a, f(a, y_0))), h(a)) -> F(f(a, f(a, y_0)), h(h(a)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x0), a) -> F(f(x0, h(a)), a) F(f(a, x0), h(a)) -> F(f(x0, h(h(a))), a) F(f(a, x0), h(h(h(z1)))) -> F(f(x0, h(h(h(h(z1))))), a) F(f(a, x0), h(h(a))) -> F(f(x0, h(h(h(a)))), a) F(f(a, f(a, y_0)), a) -> F(f(a, y_0), h(a)) F(f(a, f(a, y_0)), h(h(x1))) -> F(f(a, y_0), h(h(h(x1)))) F(f(a, f(a, y_0)), h(a)) -> F(f(a, y_0), h(h(a))) F(f(a, f(a, f(a, y_0))), h(a)) -> F(f(a, f(a, y_0)), h(h(a))) The TRS R consists of the following rules: f(f(a, x), y) -> f(a, f(f(x, h(y)), a)) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 f: 0 h: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1(f.1-0(a., x0), a.) -> F.0-1(f.0-0(x0, h.1(a.)), a.) F.0-1(f.1-1(a., x0), a.) -> F.0-1(f.1-0(x0, h.1(a.)), a.) F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) -> F.0-0(f.1-0(a., y_0), h.1(a.)) F.0-1(f.1-0(a., f.1-1(a., y_0)), a.) -> F.0-0(f.1-1(a., y_0), h.1(a.)) F.0-0(f.1-0(a., x0), h.1(a.)) -> F.0-1(f.0-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-1(a., x0), h.1(a.)) -> F.0-1(f.1-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., x0), h.0(h.1(a.))) -> F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-1(a., x0), h.0(h.1(a.))) -> F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) -> F.0-0(f.1-0(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) -> F.0-0(f.1-1(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1)))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.)) f.0-1(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.)) f.0-0(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.)) f.0-1(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.)) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1(f.1-0(a., x0), a.) -> F.0-1(f.0-0(x0, h.1(a.)), a.) F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) -> F.0-0(f.1-0(a., y_0), h.1(a.)) F.0-0(f.1-0(a., x0), h.1(a.)) -> F.0-1(f.0-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) -> F.0-0(f.1-0(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., x0), h.0(h.1(a.))) -> F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) -> F.0-0(f.1-1(a., y_0), h.0(h.1(a.))) F.0-0(f.1-1(a., x0), h.0(h.1(a.))) -> F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.)) f.0-1(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.)) f.0-0(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.)) f.0-1(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.)) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.0-0(f.1-1(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-1(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.1-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-1(a., x0), h.0(h.1(a.))) -> F.0-1(f.1-0(x0, h.0(h.0(h.1(a.)))), a.) Strictly oriented rules of the TRS R: f.0-0(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.0(y)), a.)) f.0-1(f.1-1(a., x), y) -> f.1-0(a., f.0-1(f.1-0(x, h.1(y)), a.)) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(F.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(h.0(x_1)) = x_1 POL(h.1(x_1)) = x_1 ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1(f.1-0(a., x0), a.) -> F.0-1(f.0-0(x0, h.1(a.)), a.) F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) -> F.0-0(f.1-0(a., y_0), h.1(a.)) F.0-0(f.1-0(a., x0), h.1(a.)) -> F.0-1(f.0-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) -> F.0-0(f.1-0(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., x0), h.0(h.1(a.))) -> F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-1(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., f.1-1(a., y_0)), h.1(a.)) -> F.0-0(f.1-1(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.)) f.0-1(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.)) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1(f.1-0(a., x0), a.) -> F.0-1(f.0-0(x0, h.1(a.)), a.) F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) -> F.0-0(f.1-0(a., y_0), h.1(a.)) F.0-0(f.1-0(a., x0), h.1(a.)) -> F.0-1(f.0-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) -> F.0-0(f.1-0(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., x0), h.0(h.1(a.))) -> F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.)) f.0-1(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.)) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.0-1(f.1-0(a., x0), a.) -> F.0-1(f.0-0(x0, h.1(a.)), a.) F.0-1(f.1-0(a., f.1-0(a., y_0)), a.) -> F.0-0(f.1-0(a., y_0), h.1(a.)) F.0-0(f.1-0(a., x0), h.1(a.)) -> F.0-1(f.0-0(x0, h.0(h.1(a.))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.1(a.)) -> F.0-0(f.1-0(a., y_0), h.0(h.1(a.))) F.0-0(f.1-0(a., x0), h.0(h.1(a.))) -> F.0-1(f.0-0(x0, h.0(h.0(h.1(a.)))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.1(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.1(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.1(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.0(x1))) -> F.0-0(f.1-0(a., y_0), h.0(h.0(h.0(x1)))) F.0-0(f.1-0(a., x0), h.0(h.0(h.0(z1)))) -> F.0-1(f.0-0(x0, h.0(h.0(h.0(h.0(z1))))), a.) F.0-0(f.1-0(a., f.1-0(a., f.1-0(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-0(a., y_0)), h.0(h.1(a.))) F.0-0(f.1-0(a., f.1-0(a., f.1-1(a., y_0))), h.1(a.)) -> F.0-0(f.1-0(a., f.1-1(a., y_0)), h.0(h.1(a.))) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(F.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 POL(h.0(x_1)) = x_1 POL(h.1(x_1)) = x_1 ---------------------------------------- (30) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.0(y)), a.)) f.0-1(f.1-0(a., x), y) -> f.1-0(a., f.0-1(f.0-0(x, h.1(y)), a.)) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (32) YES