/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220head : [o] --> o a!6220!6220incr : [o] --> o a!6220!6220nats : [] --> o a!6220!6220odds : [] --> o a!6220!6220pairs : [] --> o a!6220!6220tail : [o] --> o cons : [o * o] --> o head : [o] --> o incr : [o] --> o mark : [o] --> o nats : [] --> o nil : [] --> o odds : [] --> o pairs : [] --> o s : [o] --> o tail : [o] --> o a!6220!6220nats => cons(0, incr(nats)) a!6220!6220pairs => cons(0, incr(odds)) a!6220!6220odds => a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) a!6220!6220head(cons(X, Y)) => mark(X) a!6220!6220tail(cons(X, Y)) => mark(Y) mark(nats) => a!6220!6220nats mark(pairs) => a!6220!6220pairs mark(odds) => a!6220!6220odds mark(incr(X)) => a!6220!6220incr(mark(X)) mark(head(X)) => a!6220!6220head(mark(X)) mark(tail(X)) => a!6220!6220tail(mark(X)) mark(0) => 0 mark(s(X)) => s(mark(X)) mark(nil) => nil mark(cons(X, Y)) => cons(mark(X), Y) a!6220!6220nats => nats a!6220!6220pairs => pairs a!6220!6220odds => odds a!6220!6220incr(X) => incr(X) a!6220!6220head(X) => head(X) a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220head(cons(X, Y)) >? mark(X) a!6220!6220tail(cons(X, Y)) >? mark(Y) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.2y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.2 + y0 cons = \y0y1.2y0 + 2y1 head = \y0.y0 incr = \y0.2y0 mark = \y0.y0 nats = 0 nil = 0 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.2 + y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 4x0 + 4x1 >= 2x0 + 4x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220head(cons(_x0, _x1))]] = 2x0 + 2x1 >= x0 = [[mark(_x0)]] [[a!6220!6220tail(cons(_x0, _x1))]] = 2 + 2x0 + 2x1 > x1 = [[mark(_x1)]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(head(_x0))]] = x0 >= x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220head(_x0)]] = x0 >= x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = 2 + x0 >= 2 + x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220tail(cons(X, Y)) => mark(Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) a!6220!6220head(cons(X, Y)) >? mark(X) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220head = \y0.1 + y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.y0 cons = \y0y1.2y0 + 2y1 head = \y0.1 + y0 incr = \y0.y0 mark = \y0.y0 nats = 0 nil = 0 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[a!6220!6220head(cons(_x0, _x1))]] = 1 + 2x0 + 2x1 > x0 = [[mark(_x0)]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(head(_x0))]] = 1 + x0 >= 1 + x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = x0 >= x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(nil)]] = 0 >= 0 = [[nil]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220head(_x0)]] = 1 + x0 >= 1 + x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220head(cons(X, Y)) => mark(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(nil) >? nil mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.2y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.y0 cons = \y0y1.2y0 + 2y1 head = \y0.y0 incr = \y0.2y0 mark = \y0.2y0 nats = 0 nil = 2 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 4x0 + 4x1 >= 4x0 + 4x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(head(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(nil)]] = 4 > 2 = [[nil]] [[mark(cons(_x0, _x1))]] = 4x0 + 4x1 >= 2x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220head(_x0)]] = x0 >= x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] We can thus remove the following rules: mark(nil) => nil We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) a!6220!6220head(X) >? head(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220head = \y0.2 + y0 a!6220!6220incr = \y0.2y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.y0 cons = \y0y1.y1 + 2y0 head = \y0.1 + y0 incr = \y0.2y0 mark = \y0.2y0 nats = 0 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(head(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x1 + 4x0 >= x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220head(_x0)]] = 2 + x0 > 1 + x0 = [[head(_x0)]] [[a!6220!6220tail(_x0)]] = x0 >= x0 = [[tail(_x0)]] We can thus remove the following rules: a!6220!6220head(X) => head(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(head(X)) >? a!6220!6220head(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) a!6220!6220tail(X) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220head = \y0.y0 a!6220!6220incr = \y0.2y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.2 + y0 cons = \y0y1.y0 + 2y1 head = \y0.3 + 3y0 incr = \y0.2y0 mark = \y0.2y0 nats = 0 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.1 + y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 4x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(head(_x0))]] = 6 + 6x0 > 2x0 = [[a!6220!6220head(mark(_x0))]] [[mark(tail(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 4x1 >= 2x0 + 2x1 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] [[a!6220!6220tail(_x0)]] = 2 + x0 > 1 + x0 = [[tail(_x0)]] We can thus remove the following rules: mark(head(X)) => a!6220!6220head(mark(X)) a!6220!6220tail(X) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(tail(X)) >? a!6220!6220tail(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220odds = 0 a!6220!6220pairs = 0 a!6220!6220tail = \y0.y0 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.y0 nats = 0 odds = 0 pairs = 0 s = \y0.y0 tail = \y0.3 + 3y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(tail(_x0))]] = 3 + 3x0 > x0 = [[a!6220!6220tail(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(tail(X)) => a!6220!6220tail(mark(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? cons(0, incr(nats)) a!6220!6220pairs >? cons(0, incr(odds)) a!6220!6220odds >? a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >? cons(s(mark(X)), incr(Y)) mark(nats) >? a!6220!6220nats mark(pairs) >? a!6220!6220pairs mark(odds) >? a!6220!6220odds mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(0) >? 0 mark(s(X)) >? s(mark(X)) mark(cons(X, Y)) >? cons(mark(X), Y) a!6220!6220nats >? nats a!6220!6220pairs >? pairs a!6220!6220odds >? odds a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2y0 a!6220!6220nats = 2 a!6220!6220odds = 0 a!6220!6220pairs = 0 cons = \y0y1.y1 + 2y0 incr = \y0.2y0 mark = \y0.2y0 nats = 1 odds = 0 pairs = 0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 2 >= 2 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 0 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x1 + 4x0 >= 2x1 + 4x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 2 >= 2 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 0 >= 0 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= 2x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x1 + 4x0 >= x1 + 4x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220nats]] = 2 > 1 = [[nats]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 0 >= 0 = [[odds]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220nats => nats We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] a!6220!6220odds# =#> a!6220!6220incr#(a!6220!6220pairs) 1] a!6220!6220odds# =#> a!6220!6220pairs# 2] a!6220!6220incr#(cons(X, Y)) =#> mark#(X) 3] mark#(nats) =#> a!6220!6220nats# 4] mark#(pairs) =#> a!6220!6220pairs# 5] mark#(odds) =#> a!6220!6220odds# 6] mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) 7] mark#(incr(X)) =#> mark#(X) 8] mark#(s(X)) =#> mark#(X) 9] mark#(cons(X, Y)) =#> mark#(X) Rules R_0: a!6220!6220nats => cons(0, incr(nats)) a!6220!6220pairs => cons(0, incr(odds)) a!6220!6220odds => a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) mark(nats) => a!6220!6220nats mark(pairs) => a!6220!6220pairs mark(odds) => a!6220!6220odds mark(incr(X)) => a!6220!6220incr(mark(X)) mark(0) => 0 mark(s(X)) => s(mark(X)) mark(cons(X, Y)) => cons(mark(X), Y) a!6220!6220pairs => pairs a!6220!6220odds => odds a!6220!6220incr(X) => incr(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 2 * 1 : * 2 : 3, 4, 5, 6, 7, 8, 9 * 3 : * 4 : * 5 : 0, 1 * 6 : 2 * 7 : 3, 4, 5, 6, 7, 8, 9 * 8 : 3, 4, 5, 6, 7, 8, 9 * 9 : 3, 4, 5, 6, 7, 8, 9 This graph has the following strongly connected components: P_1: a!6220!6220odds# =#> a!6220!6220incr#(a!6220!6220pairs) a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(odds) =#> a!6220!6220odds# mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(s(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= a!6220!6220nats => cons(0, incr(nats)) a!6220!6220pairs => cons(0, incr(odds)) a!6220!6220odds => a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) => cons(s(mark(X)), incr(Y)) mark(nats) => a!6220!6220nats mark(pairs) => a!6220!6220pairs mark(odds) => a!6220!6220odds mark(incr(X)) => a!6220!6220incr(mark(X)) mark(s(X)) => s(mark(X)) mark(cons(X, Y)) => cons(mark(X), Y) a!6220!6220pairs => pairs a!6220!6220odds => odds a!6220!6220incr(X) => incr(X) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220odds# >? a!6220!6220incr#(a!6220!6220pairs) a!6220!6220incr#(cons(X, Y)) >? mark#(X) mark#(odds) >? a!6220!6220odds# mark#(incr(X)) >? a!6220!6220incr#(mark(X)) mark#(incr(X)) >? mark#(X) mark#(s(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) a!6220!6220nats >= cons(0, incr(nats)) a!6220!6220pairs >= cons(0, incr(odds)) a!6220!6220odds >= a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >= cons(s(mark(X)), incr(Y)) mark(nats) >= a!6220!6220nats mark(pairs) >= a!6220!6220pairs mark(odds) >= a!6220!6220odds mark(incr(X)) >= a!6220!6220incr(mark(X)) mark(s(X)) >= s(mark(X)) mark(cons(X, Y)) >= cons(mark(X), Y) a!6220!6220pairs >= pairs a!6220!6220odds >= odds a!6220!6220incr(X) >= incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.y0 a!6220!6220incr# = \y0.2y0 a!6220!6220nats = 0 a!6220!6220odds = 1 a!6220!6220odds# = 0 a!6220!6220pairs = 0 cons = \y0y1.y0 incr = \y0.y0 mark = \y0.y0 mark# = \y0.2y0 nats = 0 odds = 1 pairs = 0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220odds#]] = 0 >= 0 = [[a!6220!6220incr#(a!6220!6220pairs)]] [[a!6220!6220incr#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(odds)]] = 2 > 0 = [[a!6220!6220odds#]] [[mark#(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr#(mark(_x0))]] [[mark#(incr(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 1 >= 0 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 >= x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 1 >= 1 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x0 >= x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 1 >= 1 = [[odds]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_2, R_1, minimal, formative), where P_2 consists of: a!6220!6220odds# =#> a!6220!6220incr#(a!6220!6220pairs) a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(s(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) Thus, the original system is terminating if (P_2, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1 * 1 : 2, 3, 4, 5 * 2 : 1 * 3 : 2, 3, 4, 5 * 4 : 2, 3, 4, 5 * 5 : 2, 3, 4, 5 This graph has the following strongly connected components: P_3: a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(incr(X)) =#> a!6220!6220incr#(mark(X)) mark#(incr(X)) =#> mark#(X) mark#(s(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_2, R_1, m, f) by (P_3, R_1, m, f). Thus, the original system is terminating if (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: a!6220!6220incr#(cons(X, Y)) >? mark#(X) mark#(incr(X)) >? a!6220!6220incr#(mark(X)) mark#(incr(X)) >? mark#(X) mark#(s(X)) >? mark#(X) mark#(cons(X, Y)) >? mark#(X) a!6220!6220nats >= cons(0, incr(nats)) a!6220!6220pairs >= cons(0, incr(odds)) a!6220!6220odds >= a!6220!6220incr(a!6220!6220pairs) a!6220!6220incr(cons(X, Y)) >= cons(s(mark(X)), incr(Y)) mark(nats) >= a!6220!6220nats mark(pairs) >= a!6220!6220pairs mark(odds) >= a!6220!6220odds mark(incr(X)) >= a!6220!6220incr(mark(X)) mark(s(X)) >= s(mark(X)) mark(cons(X, Y)) >= cons(mark(X), Y) a!6220!6220pairs >= pairs a!6220!6220odds >= odds a!6220!6220incr(X) >= incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220incr = \y0.2 + 3y0 a!6220!6220incr# = \y0.y0 a!6220!6220nats = 0 a!6220!6220odds = 2 a!6220!6220pairs = 0 cons = \y0y1.3y0 incr = \y0.2 + 3y0 mark = \y0.y0 mark# = \y0.2y0 nats = 0 odds = 2 pairs = 0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr#(cons(_x0, _x1))]] = 3x0 >= 2x0 = [[mark#(_x0)]] [[mark#(incr(_x0))]] = 4 + 6x0 > x0 = [[a!6220!6220incr#(mark(_x0))]] [[mark#(incr(_x0))]] = 4 + 6x0 > 2x0 = [[mark#(_x0)]] [[mark#(s(_x0))]] = 2x0 >= 2x0 = [[mark#(_x0)]] [[mark#(cons(_x0, _x1))]] = 6x0 >= 2x0 = [[mark#(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[cons(0, incr(nats))]] [[a!6220!6220pairs]] = 0 >= 0 = [[cons(0, incr(odds))]] [[a!6220!6220odds]] = 2 >= 2 = [[a!6220!6220incr(a!6220!6220pairs)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2 + 9x0 >= 3x0 = [[cons(s(mark(_x0)), incr(_x1))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(pairs)]] = 0 >= 0 = [[a!6220!6220pairs]] [[mark(odds)]] = 2 >= 2 = [[a!6220!6220odds]] [[mark(incr(_x0))]] = 2 + 3x0 >= 2 + 3x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(s(_x0))]] = x0 >= x0 = [[s(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 3x0 >= 3x0 = [[cons(mark(_x0), _x1)]] [[a!6220!6220pairs]] = 0 >= 0 = [[pairs]] [[a!6220!6220odds]] = 2 >= 2 = [[odds]] [[a!6220!6220incr(_x0)]] = 2 + 3x0 >= 2 + 3x0 = [[incr(_x0)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_3, R_1, minimal, formative) by (P_4, R_1, minimal, formative), where P_4 consists of: a!6220!6220incr#(cons(X, Y)) =#> mark#(X) mark#(s(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) Thus, the original system is terminating if (P_4, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_1, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 1, 2 * 1 : 1, 2 * 2 : 1, 2 This graph has the following strongly connected components: P_5: mark#(s(X)) =#> mark#(X) mark#(cons(X, Y)) =#> mark#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_4, R_1, m, f) by (P_5, R_1, m, f). Thus, the original system is terminating if (P_5, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(s(X))) = s(X) |> X = nu(mark#(X)) nu(mark#(cons(X, Y))) = cons(X, Y) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.