/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR f g l x xs) (RULES app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ) Problem 1: Innermost Equivalent Processor: -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: APP(app(app(compose,f),g),x) -> APP(f,x) APP(app(app(compose,f),g),x) -> APP(g,app(f,x)) APP(app(reverse2,app(app(cons,x),xs)),l) -> APP(app(reverse2,xs),app(app(cons,x),l)) APP(reverse,l) -> APP(app(reverse2,l),nil) -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) Problem 1: SCC Processor: -> Pairs: APP(app(app(compose,f),g),x) -> APP(f,x) APP(app(app(compose,f),g),x) -> APP(g,app(f,x)) APP(app(reverse2,app(app(cons,x),xs)),l) -> APP(app(reverse2,xs),app(app(cons,x),l)) APP(reverse,l) -> APP(app(reverse2,l),nil) -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: APP(app(reverse2,app(app(cons,x),xs)),l) -> APP(app(reverse2,xs),app(app(cons,x),l)) ->->-> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ->->Cycle: ->->-> Pairs: APP(app(app(compose,f),g),x) -> APP(f,x) APP(app(app(compose,f),g),x) -> APP(g,app(f,x)) ->->-> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: APP(app(reverse2,app(app(cons,x),xs)),l) -> APP(app(reverse2,xs),app(app(cons,x),l)) -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) -> Usable rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [app](X1,X2) = X1 + X2 + 2 [compose] = 1 [cons] = 1 [hd] = 0 [nil] = 0 [reverse] = 2 [reverse2] = 0 [tl] = 0 [APP](X1,X2) = 2.X1 + X2 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: APP(app(app(compose,f),g),x) -> APP(f,x) APP(app(app(compose,f),g),x) -> APP(g,app(f,x)) -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ->Projection: pi(APP) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: app(app(app(compose,f),g),x) -> app(g,app(f,x)) app(app(reverse2,app(app(cons,x),xs)),l) -> app(app(reverse2,xs),app(app(cons,x),l)) app(app(reverse2,nil),l) -> l app(hd,app(app(cons,x),xs)) -> x app(reverse,l) -> app(app(reverse2,l),nil) app(tl,app(app(cons,x),xs)) -> xs init -> app(app(compose,reverse),app(app(compose,tl),reverse)) last -> app(app(compose,hd),reverse) ->Strongly Connected Components: There is no strongly connected component The problem is finite.