/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 23 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) TransformationProof [EQUIVALENT, 0 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) DependencyGraphProof [EQUIVALENT, 0 ms] (46) QDP (47) UsableRulesProof [EQUIVALENT, 0 ms] (48) QDP (49) QReductionProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) UsableRulesProof [EQUIVALENT, 0 ms] (54) QDP (55) QReductionProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 0 ms] (58) QDP (59) UsableRulesProof [EQUIVALENT, 0 ms] (60) QDP (61) QReductionProof [EQUIVALENT, 0 ms] (62) QDP (63) QDPSizeChangeProof [EQUIVALENT, 0 ms] (64) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x The TRS R 2 is cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) The signature Sigma is {cond_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(and(gr(x, 0), gr(y, 0)), p(x), p(y)) COND(true, x, y) -> AND(gr(x, 0), gr(y, 0)) COND(true, x, y) -> GR(x, 0) COND(true, x, y) -> GR(y, 0) COND(true, x, y) -> P(x) COND(true, x, y) -> P(y) GR(s(x), s(y)) -> GR(x, y) The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GR(s(x), s(y)) -> GR(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(and(gr(x, 0), gr(y, 0)), p(x), p(y)) The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(and(gr(x, 0), gr(y, 0)), p(x), p(y)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0, x1) and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0, x1) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(and(gr(x, 0), gr(y, 0)), p(x), p(y)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND(true, x, y) -> COND(and(gr(x, 0), gr(y, 0)), p(x), p(y)) at position [0] we obtained the following new rules [LPAR04]: (COND(true, 0, y1) -> COND(and(false, gr(y1, 0)), p(0), p(y1)),COND(true, 0, y1) -> COND(and(false, gr(y1, 0)), p(0), p(y1))) (COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1)),COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1))) (COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)),COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0))) (COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))),COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, 0, y1) -> COND(and(false, gr(y1, 0)), p(0), p(y1)) COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1)) COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)) COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, 0, y1) -> COND(and(false, gr(y1, 0)), p(0), p(y1)) at position [0] we obtained the following new rules [LPAR04]: (COND(true, 0, y1) -> COND(false, p(0), p(y1)),COND(true, 0, y1) -> COND(false, p(0), p(y1))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1)) COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)) COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) COND(true, 0, y1) -> COND(false, p(0), p(y1)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1)) COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)) COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), p(s(x0)), p(y1)) at position [1] we obtained the following new rules [LPAR04]: (COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)),COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)) COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, y0, 0) -> COND(and(gr(y0, 0), false), p(y0), p(0)) at position [0] we obtained the following new rules [LPAR04]: (COND(true, y0, 0) -> COND(false, p(y0), p(0)),COND(true, y0, 0) -> COND(false, p(y0), p(0))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)) COND(true, y0, 0) -> COND(false, p(y0), p(0)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), p(s(x0))) at position [2] we obtained the following new rules [LPAR04]: (COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0),COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)) COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND(true, s(x0), y1) -> COND(and(true, gr(y1, 0)), x0, p(y1)) at position [0] we obtained the following new rules [LPAR04]: (COND(true, s(y0), 0) -> COND(and(true, false), y0, p(0)),COND(true, s(y0), 0) -> COND(and(true, false), y0, p(0))) (COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0))),COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0)))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) COND(true, s(y0), 0) -> COND(and(true, false), y0, p(0)) COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0))) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0))) The TRS R consists of the following rules: gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(x, false) -> false and(false, x) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0))) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(false, x) -> false p(0) -> 0 The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, s(y0), s(x0)) -> COND(and(true, true), y0, p(s(x0))) at position [0] we obtained the following new rules [LPAR04]: (COND(true, s(y0), s(x0)) -> COND(true, y0, p(s(x0))),COND(true, s(y0), s(x0)) -> COND(true, y0, p(s(x0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) COND(true, s(y0), s(x0)) -> COND(true, y0, p(s(x0))) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(false, x) -> false p(0) -> 0 The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, s(y0), s(x0)) -> COND(true, y0, p(s(x0))) at position [2] we obtained the following new rules [LPAR04]: (COND(true, s(y0), s(x0)) -> COND(true, y0, x0),COND(true, s(y0), s(x0)) -> COND(true, y0, x0)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) COND(true, s(y0), s(x0)) -> COND(true, y0, x0) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(false, x) -> false p(0) -> 0 The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND(true, y0, s(x0)) -> COND(and(gr(y0, 0), true), p(y0), x0) at position [0] we obtained the following new rules [LPAR04]: (COND(true, 0, s(y1)) -> COND(and(false, true), p(0), y1),COND(true, 0, s(y1)) -> COND(and(false, true), p(0), y1)) (COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1),COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, 0, s(y1)) -> COND(and(false, true), p(0), y1) COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(false, x) -> false p(0) -> 0 The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(false, x) -> false p(0) -> 0 The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, s(x0), s(y1)) -> COND(and(true, true), p(s(x0)), y1) at position [0] we obtained the following new rules [LPAR04]: (COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1),COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1)) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1) The TRS R consists of the following rules: and(true, true) -> true p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1) The TRS R consists of the following rules: p(s(x)) -> x The set Q consists of the following terms: and(true, true) and(x0, false) and(false, x0) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. and(true, true) and(x0, false) and(false, x0) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1) The TRS R consists of the following rules: p(s(x)) -> x The set Q consists of the following terms: p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND(true, s(x0), s(y1)) -> COND(true, p(s(x0)), y1) at position [1] we obtained the following new rules [LPAR04]: (COND(true, s(x0), s(y1)) -> COND(true, x0, y1),COND(true, s(y0), s(x0)) -> COND(true, y0, x0)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) The TRS R consists of the following rules: p(s(x)) -> x The set Q consists of the following terms: p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) R is empty. The set Q consists of the following terms: p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(0) p(s(x0)) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, s(y0), s(x0)) -> COND(true, y0, x0) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *COND(true, s(y0), s(x0)) -> COND(true, y0, x0) The graph contains the following edges 1 >= 1, 2 > 2, 3 > 3 ---------------------------------------- (64) YES