/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) QDP (39) QReductionProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPOrderProof [EQUIVALENT, 1 ms] (42) QDP (43) DependencyGraphProof [EQUIVALENT, 0 ms] (44) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(cons(x, cons(y, ys))) -> LAST(cons(y, ys)) DROPLAST(cons(x, cons(y, ys))) -> DROPLAST(cons(y, ys)) APPEND(cons(x, xs), ys) -> APPEND(xs, ys) REVERSE(xs) -> REV(xs, nil) REV(xs, ys) -> IF(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) REV(xs, ys) -> ISEMPTY(xs) REV(xs, ys) -> DROPLAST(xs) REV(xs, ys) -> APPEND(ys, last(xs)) REV(xs, ys) -> LAST(xs) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) R is empty. The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND(cons(x, xs), ys) -> APPEND(xs, ys) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: DROPLAST(cons(x, cons(y, ys))) -> DROPLAST(cons(y, ys)) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: DROPLAST(cons(x, cons(y, ys))) -> DROPLAST(cons(y, ys)) R is empty. The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: DROPLAST(cons(x, cons(y, ys))) -> DROPLAST(cons(y, ys)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DROPLAST(cons(x, cons(y, ys))) -> DROPLAST(cons(y, ys)) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(cons(x, cons(y, ys))) -> LAST(cons(y, ys)) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(cons(x, cons(y, ys))) -> LAST(cons(y, ys)) R is empty. The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: LAST(cons(x, cons(y, ys))) -> LAST(cons(y, ys)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LAST(cons(x, cons(y, ys))) -> LAST(cons(y, ys)) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: REV(xs, ys) -> IF(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: REV(xs, ys) -> IF(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. reverse(x0) rev(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: REV(xs, ys) -> IF(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule REV(xs, ys) -> IF(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) at position [0] we obtained the following new rules [LPAR04]: (REV(nil, y1) -> IF(true, dropLast(nil), append(y1, last(nil)), y1),REV(nil, y1) -> IF(true, dropLast(nil), append(y1, last(nil)), y1)) (REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1),REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, xs, ys, zs) -> REV(xs, ys) REV(nil, y1) -> IF(true, dropLast(nil), append(y1, last(nil)), y1) REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: isEmpty(nil) isEmpty(cons(x0, x1)) last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isEmpty(nil) isEmpty(cons(x0, x1)) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1) IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. REV(cons(x0, x1), y1) -> IF(false, dropLast(cons(x0, x1)), append(y1, last(cons(x0, x1))), y1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_4(x_1, ..., x_4) ) = max{0, 2x_1 + 2x_2 - 2} POL( dropLast_1(x_1) ) = max{0, x_1 - 2} POL( cons_2(x_1, x_2) ) = 2x_2 + 1 POL( nil ) = 2 POL( append_2(x_1, x_2) ) = 2 POL( last_1(x_1) ) = max{0, -2} POL( REV_2(x_1, x_2) ) = 2x_1 POL( false ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, xs, ys, zs) -> REV(xs, ys) The TRS R consists of the following rules: dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: last(cons(x0, nil)) last(cons(x0, cons(x1, x2))) dropLast(nil) dropLast(cons(x0, nil)) dropLast(cons(x0, cons(x1, x2))) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (44) TRUE