/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o add : [o * o] --> o eq : [o * o] --> o false : [] --> o ifrm : [o * o * o] --> o nil : [] --> o purge : [o] --> o rm : [o * o] --> o s : [o] --> o true : [] --> o eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) rm(X, nil) => nil rm(X, add(Y, Z)) => ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) => rm(X, Z) ifrm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) purge(nil) => nil purge(add(X, Y)) => add(X, purge(rm(X, Y))) As the system is orthogonal, it is terminating if it is innermost terminating by [Gra95]. Then, by [FuhGieParSchSwi11], it suffices to prove (innermost) termination of the typed system, with sort annotations chosen to respect the rules, as follows: 0 : [] --> ad add : [ad * ad] --> ad eq : [ad * ad] --> jb false : [] --> jb ifrm : [jb * ad * ad] --> ad nil : [] --> ad purge : [ad] --> ad rm : [ad * ad] --> ad s : [ad] --> ad true : [] --> jb We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] eq#(s(X), s(Y)) =#> eq#(X, Y) 1] rm#(X, add(Y, Z)) =#> ifrm#(eq(X, Y), X, add(Y, Z)) 2] rm#(X, add(Y, Z)) =#> eq#(X, Y) 3] ifrm#(true, X, add(Y, Z)) =#> rm#(X, Z) 4] ifrm#(false, X, add(Y, Z)) =#> rm#(X, Z) 5] purge#(add(X, Y)) =#> purge#(rm(X, Y)) 6] purge#(add(X, Y)) =#> rm#(X, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) rm(X, nil) => nil rm(X, add(Y, Z)) => ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) => rm(X, Z) ifrm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) purge(nil) => nil purge(add(X, Y)) => add(X, purge(rm(X, Y))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 3, 4 * 2 : 0 * 3 : 1, 2 * 4 : 1, 2 * 5 : 5, 6 * 6 : 1, 2 This graph has the following strongly connected components: P_1: eq#(s(X), s(Y)) =#> eq#(X, Y) P_2: rm#(X, add(Y, Z)) =#> ifrm#(eq(X, Y), X, add(Y, Z)) ifrm#(true, X, add(Y, Z)) =#> rm#(X, Z) ifrm#(false, X, add(Y, Z)) =#> rm#(X, Z) P_3: purge#(add(X, Y)) =#> purge#(rm(X, Y)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). The formative rules of (P_3, R_0) are R_1 ::= eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) rm(X, add(Y, Z)) => ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) => rm(X, Z) ifrm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) purge(add(X, Y)) => add(X, purge(rm(X, Y))) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_3, R_0, minimal, formative) by (P_3, R_1, minimal, formative). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_3, R_1) are: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) rm(X, add(Y, Z)) => ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) => rm(X, Z) ifrm(false, X, add(Y, Z)) => add(Y, rm(X, Z)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: purge#(add(X, Y)) >? purge#(rm(X, Y)) eq(0, 0) >= true eq(0, s(X)) >= false eq(s(X), 0) >= false eq(s(X), s(Y)) >= eq(X, Y) rm(X, add(Y, Z)) >= ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) >= rm(X, Z) ifrm(false, X, add(Y, Z)) >= add(Y, rm(X, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: ifrm(x_1,x_2,x_3) = ifrm(x_2x_3) This leaves the following ordering requirements: purge#(add(X, Y)) > purge#(rm(X, Y)) rm(X, add(Y, Z)) >= ifrm(eq(X, Y), X, add(Y, Z)) ifrm(true, X, add(Y, Z)) >= rm(X, Z) ifrm(false, X, add(Y, Z)) >= add(Y, rm(X, Z)) The following interpretation satisfies the requirements: 0 = 3 add = \y0y1.3 + y1 eq = \y0y1.0 false = 0 ifrm = \y0y1y2.y2 purge# = \y0.3y0 rm = \y0y1.y1 s = \y0.3 true = 0 Using this interpretation, the requirements translate to: [[purge#(add(_x0, _x1))]] = 9 + 3x1 > 3x1 = [[purge#(rm(_x0, _x1))]] [[rm(_x0, add(_x1, _x2))]] = 3 + x2 >= 3 + x2 = [[ifrm(eq(_x0, _x1), _x0, add(_x1, _x2))]] [[ifrm(true, _x0, add(_x1, _x2))]] = 3 + x2 >= x2 = [[rm(_x0, _x2)]] [[ifrm(false, _x0, add(_x1, _x2))]] = 3 + x2 >= 3 + x2 = [[add(_x1, rm(_x0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_3, R_1) by ({}, R_1). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(ifrm#) = 3 nu(rm#) = 2 Thus, we can orient the dependency pairs as follows: nu(rm#(X, add(Y, Z))) = add(Y, Z) = add(Y, Z) = nu(ifrm#(eq(X, Y), X, add(Y, Z))) nu(ifrm#(true, X, add(Y, Z))) = add(Y, Z) |> Z = nu(rm#(X, Z)) nu(ifrm#(false, X, add(Y, Z))) = add(Y, Z) |> Z = nu(rm#(X, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_4, R_0, minimal, f), where P_4 contains: rm#(X, add(Y, Z)) =#> ifrm#(eq(X, Y), X, add(Y, Z)) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(eq#) = 1 Thus, we can orient the dependency pairs as follows: nu(eq#(s(X), s(Y))) = s(X) |> X = nu(eq#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [FuhGieParSchSwi11] C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving Termination by Dependency Pairs and Inductive Theorem Proving. In volume 47(2) of Journal of Automated Reasoning. 133--160, 2011. [Gra95] B. Gramlich. Abstract Relations Between Restricted Termination and Confluence Properties of Rewrite Systems. In volume 24(1-2) of Fundamentae Informaticae. 3--23, 1995. [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.