/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR M N X Y) (RULES eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: EQ(s(X),s(Y)) -> EQ(X,Y) IFRM(false,N,add(M,X)) -> RM(N,X) IFRM(true,N,add(M,X)) -> RM(N,X) PURGE(add(N,X)) -> PURGE(rm(N,X)) PURGE(add(N,X)) -> RM(N,X) RM(N,add(M,X)) -> EQ(N,M) RM(N,add(M,X)) -> IFRM(eq(N,M),N,add(M,X)) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil Problem 1: SCC Processor: -> Pairs: EQ(s(X),s(Y)) -> EQ(X,Y) IFRM(false,N,add(M,X)) -> RM(N,X) IFRM(true,N,add(M,X)) -> RM(N,X) PURGE(add(N,X)) -> PURGE(rm(N,X)) PURGE(add(N,X)) -> RM(N,X) RM(N,add(M,X)) -> EQ(N,M) RM(N,add(M,X)) -> IFRM(eq(N,M),N,add(M,X)) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: EQ(s(X),s(Y)) -> EQ(X,Y) ->->-> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->->Cycle: ->->-> Pairs: IFRM(false,N,add(M,X)) -> RM(N,X) IFRM(true,N,add(M,X)) -> RM(N,X) RM(N,add(M,X)) -> IFRM(eq(N,M),N,add(M,X)) ->->-> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->->Cycle: ->->-> Pairs: PURGE(add(N,X)) -> PURGE(rm(N,X)) ->->-> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: EQ(s(X),s(Y)) -> EQ(X,Y) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Projection: pi(EQ) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: IFRM(false,N,add(M,X)) -> RM(N,X) IFRM(true,N,add(M,X)) -> RM(N,X) RM(N,add(M,X)) -> IFRM(eq(N,M),N,add(M,X)) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Projection: pi(IFRM) = 3 pi(RM) = 2 Problem 1.2: SCC Processor: -> Pairs: RM(N,add(M,X)) -> IFRM(eq(N,M),N,add(M,X)) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: PURGE(add(N,X)) -> PURGE(rm(N,X)) -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil -> Usable rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [eq](X1,X2) = 2 [ifrm](X1,X2,X3) = 2.X3 + 1 [rm](X1,X2) = 2.X2 + 1 [0] = 2 [add](X1,X2) = X1 + 2.X2 + 2 [false] = 2 [nil] = 1 [s](X) = 2.X [true] = 2 [PURGE](X) = X Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: eq(0,0) -> true eq(0,s(X)) -> false eq(s(X),0) -> false eq(s(X),s(Y)) -> eq(X,Y) ifrm(false,N,add(M,X)) -> add(M,rm(N,X)) ifrm(true,N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil) -> nil rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.