/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 2 ms] (17) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: Term_sub(Case(m, xi, n), s) -> Frozen(m, Sum_sub(xi, s), n, s) Frozen(m, Sum_constant(Left), n, s) -> Term_sub(m, s) Frozen(m, Sum_constant(Right), n, s) -> Term_sub(n, s) Frozen(m, Sum_term_var(xi), n, s) -> Case(Term_sub(m, s), xi, Term_sub(n, s)) Term_sub(Term_app(m, n), s) -> Term_app(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_pair(m, n), s) -> Term_pair(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_inl(m), s) -> Term_inl(Term_sub(m, s)) Term_sub(Term_inr(m), s) -> Term_inr(Term_sub(m, s)) Term_sub(Term_var(x), Id) -> Term_var(x) Term_sub(Term_var(x), Cons_usual(y, m, s)) -> m Term_sub(Term_var(x), Cons_usual(y, m, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_var(x), Cons_sum(xi, k, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_sub(m, s), t) -> Term_sub(m, Concat(s, t)) Sum_sub(xi, Id) -> Sum_term_var(xi) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_constant(k) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_sub(xi, s) Sum_sub(xi, Cons_usual(y, m, s)) -> Sum_sub(xi, s) Concat(Concat(s, t), u) -> Concat(s, Concat(t, u)) Concat(Cons_usual(x, m, s), t) -> Cons_usual(x, Term_sub(m, t), Concat(s, t)) Concat(Cons_sum(xi, k, s), t) -> Cons_sum(xi, k, Concat(s, t)) Concat(Id, s) -> s Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: TERM_SUB(Case(m, xi, n), s) -> FROZEN(m, Sum_sub(xi, s), n, s) TERM_SUB(Case(m, xi, n), s) -> SUM_SUB(xi, s) FROZEN(m, Sum_constant(Left), n, s) -> TERM_SUB(m, s) FROZEN(m, Sum_constant(Right), n, s) -> TERM_SUB(n, s) FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(m, s) FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(n, s) TERM_SUB(Term_app(m, n), s) -> TERM_SUB(m, s) TERM_SUB(Term_app(m, n), s) -> TERM_SUB(n, s) TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(m, s) TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(n, s) TERM_SUB(Term_inl(m), s) -> TERM_SUB(m, s) TERM_SUB(Term_inr(m), s) -> TERM_SUB(m, s) TERM_SUB(Term_var(x), Cons_usual(y, m, s)) -> TERM_SUB(Term_var(x), s) TERM_SUB(Term_var(x), Cons_sum(xi, k, s)) -> TERM_SUB(Term_var(x), s) TERM_SUB(Term_sub(m, s), t) -> TERM_SUB(m, Concat(s, t)) TERM_SUB(Term_sub(m, s), t) -> CONCAT(s, t) SUM_SUB(xi, Cons_sum(psi, k, s)) -> SUM_SUB(xi, s) SUM_SUB(xi, Cons_usual(y, m, s)) -> SUM_SUB(xi, s) CONCAT(Concat(s, t), u) -> CONCAT(s, Concat(t, u)) CONCAT(Concat(s, t), u) -> CONCAT(t, u) CONCAT(Cons_usual(x, m, s), t) -> TERM_SUB(m, t) CONCAT(Cons_usual(x, m, s), t) -> CONCAT(s, t) CONCAT(Cons_sum(xi, k, s), t) -> CONCAT(s, t) The TRS R consists of the following rules: Term_sub(Case(m, xi, n), s) -> Frozen(m, Sum_sub(xi, s), n, s) Frozen(m, Sum_constant(Left), n, s) -> Term_sub(m, s) Frozen(m, Sum_constant(Right), n, s) -> Term_sub(n, s) Frozen(m, Sum_term_var(xi), n, s) -> Case(Term_sub(m, s), xi, Term_sub(n, s)) Term_sub(Term_app(m, n), s) -> Term_app(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_pair(m, n), s) -> Term_pair(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_inl(m), s) -> Term_inl(Term_sub(m, s)) Term_sub(Term_inr(m), s) -> Term_inr(Term_sub(m, s)) Term_sub(Term_var(x), Id) -> Term_var(x) Term_sub(Term_var(x), Cons_usual(y, m, s)) -> m Term_sub(Term_var(x), Cons_usual(y, m, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_var(x), Cons_sum(xi, k, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_sub(m, s), t) -> Term_sub(m, Concat(s, t)) Sum_sub(xi, Id) -> Sum_term_var(xi) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_constant(k) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_sub(xi, s) Sum_sub(xi, Cons_usual(y, m, s)) -> Sum_sub(xi, s) Concat(Concat(s, t), u) -> Concat(s, Concat(t, u)) Concat(Cons_usual(x, m, s), t) -> Cons_usual(x, Term_sub(m, t), Concat(s, t)) Concat(Cons_sum(xi, k, s), t) -> Cons_sum(xi, k, Concat(s, t)) Concat(Id, s) -> s Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: SUM_SUB(xi, Cons_usual(y, m, s)) -> SUM_SUB(xi, s) SUM_SUB(xi, Cons_sum(psi, k, s)) -> SUM_SUB(xi, s) The TRS R consists of the following rules: Term_sub(Case(m, xi, n), s) -> Frozen(m, Sum_sub(xi, s), n, s) Frozen(m, Sum_constant(Left), n, s) -> Term_sub(m, s) Frozen(m, Sum_constant(Right), n, s) -> Term_sub(n, s) Frozen(m, Sum_term_var(xi), n, s) -> Case(Term_sub(m, s), xi, Term_sub(n, s)) Term_sub(Term_app(m, n), s) -> Term_app(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_pair(m, n), s) -> Term_pair(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_inl(m), s) -> Term_inl(Term_sub(m, s)) Term_sub(Term_inr(m), s) -> Term_inr(Term_sub(m, s)) Term_sub(Term_var(x), Id) -> Term_var(x) Term_sub(Term_var(x), Cons_usual(y, m, s)) -> m Term_sub(Term_var(x), Cons_usual(y, m, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_var(x), Cons_sum(xi, k, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_sub(m, s), t) -> Term_sub(m, Concat(s, t)) Sum_sub(xi, Id) -> Sum_term_var(xi) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_constant(k) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_sub(xi, s) Sum_sub(xi, Cons_usual(y, m, s)) -> Sum_sub(xi, s) Concat(Concat(s, t), u) -> Concat(s, Concat(t, u)) Concat(Cons_usual(x, m, s), t) -> Cons_usual(x, Term_sub(m, t), Concat(s, t)) Concat(Cons_sum(xi, k, s), t) -> Cons_sum(xi, k, Concat(s, t)) Concat(Id, s) -> s Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: SUM_SUB(xi, Cons_usual(y, m, s)) -> SUM_SUB(xi, s) SUM_SUB(xi, Cons_sum(psi, k, s)) -> SUM_SUB(xi, s) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SUM_SUB(xi, Cons_usual(y, m, s)) -> SUM_SUB(xi, s) The graph contains the following edges 1 >= 1, 2 > 2 *SUM_SUB(xi, Cons_sum(psi, k, s)) -> SUM_SUB(xi, s) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: TERM_SUB(Term_var(x), Cons_sum(xi, k, s)) -> TERM_SUB(Term_var(x), s) TERM_SUB(Term_var(x), Cons_usual(y, m, s)) -> TERM_SUB(Term_var(x), s) The TRS R consists of the following rules: Term_sub(Case(m, xi, n), s) -> Frozen(m, Sum_sub(xi, s), n, s) Frozen(m, Sum_constant(Left), n, s) -> Term_sub(m, s) Frozen(m, Sum_constant(Right), n, s) -> Term_sub(n, s) Frozen(m, Sum_term_var(xi), n, s) -> Case(Term_sub(m, s), xi, Term_sub(n, s)) Term_sub(Term_app(m, n), s) -> Term_app(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_pair(m, n), s) -> Term_pair(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_inl(m), s) -> Term_inl(Term_sub(m, s)) Term_sub(Term_inr(m), s) -> Term_inr(Term_sub(m, s)) Term_sub(Term_var(x), Id) -> Term_var(x) Term_sub(Term_var(x), Cons_usual(y, m, s)) -> m Term_sub(Term_var(x), Cons_usual(y, m, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_var(x), Cons_sum(xi, k, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_sub(m, s), t) -> Term_sub(m, Concat(s, t)) Sum_sub(xi, Id) -> Sum_term_var(xi) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_constant(k) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_sub(xi, s) Sum_sub(xi, Cons_usual(y, m, s)) -> Sum_sub(xi, s) Concat(Concat(s, t), u) -> Concat(s, Concat(t, u)) Concat(Cons_usual(x, m, s), t) -> Cons_usual(x, Term_sub(m, t), Concat(s, t)) Concat(Cons_sum(xi, k, s), t) -> Cons_sum(xi, k, Concat(s, t)) Concat(Id, s) -> s Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: TERM_SUB(Term_var(x), Cons_sum(xi, k, s)) -> TERM_SUB(Term_var(x), s) TERM_SUB(Term_var(x), Cons_usual(y, m, s)) -> TERM_SUB(Term_var(x), s) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TERM_SUB(Term_var(x), Cons_sum(xi, k, s)) -> TERM_SUB(Term_var(x), s) The graph contains the following edges 1 >= 1, 2 > 2 *TERM_SUB(Term_var(x), Cons_usual(y, m, s)) -> TERM_SUB(Term_var(x), s) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: FROZEN(m, Sum_constant(Left), n, s) -> TERM_SUB(m, s) TERM_SUB(Case(m, xi, n), s) -> FROZEN(m, Sum_sub(xi, s), n, s) FROZEN(m, Sum_constant(Right), n, s) -> TERM_SUB(n, s) TERM_SUB(Term_app(m, n), s) -> TERM_SUB(m, s) TERM_SUB(Term_app(m, n), s) -> TERM_SUB(n, s) TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(m, s) TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(n, s) TERM_SUB(Term_inl(m), s) -> TERM_SUB(m, s) TERM_SUB(Term_inr(m), s) -> TERM_SUB(m, s) TERM_SUB(Term_sub(m, s), t) -> TERM_SUB(m, Concat(s, t)) TERM_SUB(Term_sub(m, s), t) -> CONCAT(s, t) CONCAT(Concat(s, t), u) -> CONCAT(s, Concat(t, u)) CONCAT(Concat(s, t), u) -> CONCAT(t, u) CONCAT(Cons_usual(x, m, s), t) -> TERM_SUB(m, t) CONCAT(Cons_usual(x, m, s), t) -> CONCAT(s, t) CONCAT(Cons_sum(xi, k, s), t) -> CONCAT(s, t) FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(m, s) FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(n, s) The TRS R consists of the following rules: Term_sub(Case(m, xi, n), s) -> Frozen(m, Sum_sub(xi, s), n, s) Frozen(m, Sum_constant(Left), n, s) -> Term_sub(m, s) Frozen(m, Sum_constant(Right), n, s) -> Term_sub(n, s) Frozen(m, Sum_term_var(xi), n, s) -> Case(Term_sub(m, s), xi, Term_sub(n, s)) Term_sub(Term_app(m, n), s) -> Term_app(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_pair(m, n), s) -> Term_pair(Term_sub(m, s), Term_sub(n, s)) Term_sub(Term_inl(m), s) -> Term_inl(Term_sub(m, s)) Term_sub(Term_inr(m), s) -> Term_inr(Term_sub(m, s)) Term_sub(Term_var(x), Id) -> Term_var(x) Term_sub(Term_var(x), Cons_usual(y, m, s)) -> m Term_sub(Term_var(x), Cons_usual(y, m, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_var(x), Cons_sum(xi, k, s)) -> Term_sub(Term_var(x), s) Term_sub(Term_sub(m, s), t) -> Term_sub(m, Concat(s, t)) Sum_sub(xi, Id) -> Sum_term_var(xi) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_constant(k) Sum_sub(xi, Cons_sum(psi, k, s)) -> Sum_sub(xi, s) Sum_sub(xi, Cons_usual(y, m, s)) -> Sum_sub(xi, s) Concat(Concat(s, t), u) -> Concat(s, Concat(t, u)) Concat(Cons_usual(x, m, s), t) -> Cons_usual(x, Term_sub(m, t), Concat(s, t)) Concat(Cons_sum(xi, k, s), t) -> Cons_sum(xi, k, Concat(s, t)) Concat(Id, s) -> s Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TERM_SUB(Case(m, xi, n), s) -> FROZEN(m, Sum_sub(xi, s), n, s) The graph contains the following edges 1 > 1, 1 > 3, 2 >= 4 *TERM_SUB(Term_sub(m, s), t) -> CONCAT(s, t) The graph contains the following edges 1 > 1, 2 >= 2 *CONCAT(Cons_usual(x, m, s), t) -> TERM_SUB(m, t) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_app(m, n), s) -> TERM_SUB(m, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_app(m, n), s) -> TERM_SUB(n, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(m, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_pair(m, n), s) -> TERM_SUB(n, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_inl(m), s) -> TERM_SUB(m, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_inr(m), s) -> TERM_SUB(m, s) The graph contains the following edges 1 > 1, 2 >= 2 *TERM_SUB(Term_sub(m, s), t) -> TERM_SUB(m, Concat(s, t)) The graph contains the following edges 1 > 1 *FROZEN(m, Sum_constant(Left), n, s) -> TERM_SUB(m, s) The graph contains the following edges 1 >= 1, 4 >= 2 *FROZEN(m, Sum_constant(Right), n, s) -> TERM_SUB(n, s) The graph contains the following edges 3 >= 1, 4 >= 2 *FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(m, s) The graph contains the following edges 1 >= 1, 4 >= 2 *FROZEN(m, Sum_term_var(xi), n, s) -> TERM_SUB(n, s) The graph contains the following edges 3 >= 1, 4 >= 2 *CONCAT(Concat(s, t), u) -> CONCAT(s, Concat(t, u)) The graph contains the following edges 1 > 1 *CONCAT(Concat(s, t), u) -> CONCAT(t, u) The graph contains the following edges 1 > 1, 2 >= 2 *CONCAT(Cons_usual(x, m, s), t) -> CONCAT(s, t) The graph contains the following edges 1 > 1, 2 >= 2 *CONCAT(Cons_sum(xi, k, s), t) -> CONCAT(s, t) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (17) YES