/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 1 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 42 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 37 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: B(b(y, z), c(a, a, a)) -> F(c(z, y, z)) B(b(y, z), c(a, a, a)) -> C(z, y, z) C(y, x, f(z)) -> B(f(b(z, x)), z) C(y, x, f(z)) -> F(b(z, x)) C(y, x, f(z)) -> B(z, x) The TRS R consists of the following rules: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: B(b(y, z), c(a, a, a)) -> C(z, y, z) C(y, x, f(z)) -> B(f(b(z, x)), z) C(y, x, f(z)) -> B(z, x) The TRS R consists of the following rules: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(y, x, f(z)) -> B(z, x) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(B(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[-I]] * x_2 >>> <<< POL(b(x_1, x_2)) = [[0A]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(c(x_1, x_2, x_3)) = [[1A]] + [[-I]] * x_1 + [[2A]] * x_2 + [[2A]] * x_3 >>> <<< POL(a) = [[0A]] >>> <<< POL(C(x_1, x_2, x_3)) = [[0A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 >>> <<< POL(f(x_1)) = [[-I]] + [[0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: B(b(y, z), c(a, a, a)) -> C(z, y, z) C(y, x, f(z)) -> B(f(b(z, x)), z) The TRS R consists of the following rules: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. B(b(y, z), c(a, a, a)) -> C(z, y, z) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(B(x_1, x_2)) = [[0]] + [[0, 2]] * x_1 + [[0, 0]] * x_2 >>> <<< POL(b(x_1, x_2)) = [[0], [2]] + [[0, 2], [0, 1]] * x_1 + [[0, 0], [2, 2]] * x_2 >>> <<< POL(c(x_1, x_2, x_3)) = [[0], [2]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 + [[2, 0], [2, 2]] * x_3 >>> <<< POL(a) = [[0], [1]] >>> <<< POL(C(x_1, x_2, x_3)) = [[0]] + [[2, 3]] * x_1 + [[0, 0]] * x_2 + [[2, 0]] * x_3 >>> <<< POL(f(x_1)) = [[0], [0]] + [[0, 2], [1, 0]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: C(y, x, f(z)) -> B(f(b(z, x)), z) The TRS R consists of the following rules: b(b(y, z), c(a, a, a)) -> f(c(z, y, z)) f(b(b(a, z), c(a, x, y))) -> z c(y, x, f(z)) -> b(f(b(z, x)), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (10) TRUE