/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 18 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) TransformationProof [EQUIVALENT, 0 ms] (13) QDP (14) TransformationProof [EQUIVALENT, 0 ms] (15) QDP (16) NonTerminationLoopProof [COMPLETE, 0 ms] (17) NO (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES (32) QDP (33) UsableRulesProof [EQUIVALENT, 0 ms] (34) QDP (35) QReductionProof [EQUIVALENT, 0 ms] (36) QDP (37) NonTerminationLoopProof [COMPLETE, 0 ms] (38) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(X, XS), YS) -> APP(XS, YS) FROM(X) -> FROM(s(X)) ZWADR(cons(X, XS), cons(Y, YS)) -> APP(Y, cons(X, nil)) ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS) PREFIX(L) -> ZWADR(L, prefix(L)) PREFIX(L) -> PREFIX(L) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 2 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(X) -> FROM(s(X)) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(X) -> FROM(s(X)) R is empty. The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(X) -> FROM(s(X)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FROM(X) -> FROM(s(X)) we obtained the following new rules [LPAR04]: (FROM(s(z0)) -> FROM(s(s(z0))),FROM(s(z0)) -> FROM(s(s(z0)))) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(s(z0)) -> FROM(s(s(z0))) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule FROM(s(z0)) -> FROM(s(s(z0))) we obtained the following new rules [LPAR04]: (FROM(s(s(z0))) -> FROM(s(s(s(z0)))),FROM(s(s(z0))) -> FROM(s(s(s(z0))))) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(s(s(z0))) -> FROM(s(s(s(z0)))) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = FROM(s(s(z0))) evaluates to t =FROM(s(s(s(z0)))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [z0 / s(z0)] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from FROM(s(s(z0))) to FROM(s(s(s(z0)))). ---------------------------------------- (17) NO ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(X, XS), YS) -> APP(XS, YS) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(X, XS), YS) -> APP(XS, YS) R is empty. The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(X, XS), YS) -> APP(XS, YS) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(cons(X, XS), YS) -> APP(XS, YS) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS) R is empty. The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ZWADR(cons(X, XS), cons(Y, YS)) -> ZWADR(XS, YS) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(L) -> PREFIX(L) The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X, XS), YS) -> cons(X, app(XS, YS)) from(X) -> cons(X, from(s(X))) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X, XS), cons(Y, YS)) -> cons(app(Y, cons(X, nil)), zWadr(XS, YS)) prefix(L) -> cons(nil, zWadr(L, prefix(L))) The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(L) -> PREFIX(L) R is empty. The set Q consists of the following terms: app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) from(x0) zWadr(nil, x0) zWadr(x0, nil) zWadr(cons(x0, x1), cons(x2, x3)) prefix(x0) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: PREFIX(L) -> PREFIX(L) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = PREFIX(L) evaluates to t =PREFIX(L) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from PREFIX(L) to PREFIX(L). ---------------------------------------- (38) NO