/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR n x y) (RULES app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) REVERSE(add(n,x)) -> APP(reverse(x),add(n,nil)) REVERSE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil Problem 1: SCC Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) REVERSE(add(n,x)) -> APP(reverse(x),add(n,nil)) REVERSE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: APP(add(n,x),y) -> APP(x,y) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: REVERSE(add(n,x)) -> REVERSE(x) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(APP) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: REVERSE(add(n,x)) -> REVERSE(x) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(REVERSE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> Usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [app](X1,X2) = X1 + X2 [reverse](X) = X + 1 [add](X1,X2) = X2 + 2 [nil] = 0 [SHUFFLE](X) = 2.X Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.