/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) TransformationProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [EQUIVALENT, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 0 ms] (33) QDP (34) TransformationProof [EQUIVALENT, 0 ms] (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) TransformationProof [EQUIVALENT, 0 ms] (41) QDP (42) TransformationProof [EQUIVALENT, 0 ms] (43) QDP (44) QDPOrderProof [EQUIVALENT, 142 ms] (45) QDP (46) PisEmptyProof [EQUIVALENT, 0 ms] (47) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) MAX(s(x), s(y)) -> MAX(x, y) F(s(x), s(y), s(z)) -> F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) F(s(x), s(y), s(z)) -> MAX(s(x), max(s(y), s(z))) F(s(x), s(y), s(z)) -> MAX(s(y), s(z)) F(s(x), s(y), s(z)) -> P(min(s(x), max(s(y), s(z)))) F(s(x), s(y), s(z)) -> MIN(s(x), max(s(y), s(z))) F(s(x), s(y), s(z)) -> MIN(s(x), min(s(y), s(z))) F(s(x), s(y), s(z)) -> MIN(s(y), s(z)) F(0, y, z) -> MAX(y, z) F(x, 0, z) -> MAX(x, z) F(x, y, 0) -> MAX(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(s(x), s(y)) -> MAX(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(s(x), s(y)) -> MAX(x, y) R is empty. The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(s(x), s(y)) -> MAX(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MAX(s(x), s(y)) -> MAX(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) R is empty. The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(s(x), s(y)) -> MIN(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MIN(s(x), s(y)) -> MIN(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) p(s(x)) -> x f(s(x), s(y), s(z)) -> f(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) f(0, y, z) -> max(y, z) f(x, 0, z) -> max(x, z) f(x, y, 0) -> max(x, y) The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(s(x0), s(x1), s(x2)) f(0, x0, x1) f(x0, 0, x1) f(x0, x1, 0) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(max(s(x), max(s(y), s(z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [0,1] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))),F(s(x), s(y), s(z)) -> F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(max(s(x), s(max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [0] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z))))) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), max(s(y), s(z)))), min(s(x), min(s(y), s(z)))) at position [1,0,1] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z))))) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(min(s(x), s(max(y, z)))), min(s(x), min(s(y), s(z)))) at position [1,0] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z))))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), p(s(min(x, max(y, z)))), min(s(x), min(s(y), s(z)))) at position [1] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z))))) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) p(s(x)) -> x min(0, y) -> 0 max(0, y) -> y The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(s(x0)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), min(s(y), s(z)))) at position [2,1] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z))))) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), min(s(x), s(min(y, z)))) at position [2] we obtained the following new rules [LPAR04]: (F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z)))),F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z))))) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z)))) The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(x), s(y), s(z)) -> F(s(max(x, max(y, z))), min(x, max(y, z)), s(min(x, min(y, z)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation with max and min functions [POLO,MAXPOLO]: POL(0) = 0 POL(F(x_1, x_2, x_3)) = x_2 + x_3 POL(max(x_1, x_2)) = max(x_1, x_2) POL(min(x_1, x_2)) = min(x_1, x_2) POL(s(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 ---------------------------------------- (45) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: max(s(x), s(y)) -> s(max(x, y)) max(x, 0) -> x max(0, y) -> y min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) min(0, y) -> 0 The set Q consists of the following terms: min(0, x0) min(x0, 0) min(s(x0), s(x1)) max(0, x0) max(x0, 0) max(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (47) YES