/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 6 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) QDPOrderProof [EQUIVALENT, 130 ms] (27) QDP (28) QDPOrderProof [EQUIVALENT, 112 ms] (29) QDP (30) QDPOrderProof [EQUIVALENT, 37 ms] (31) QDP (32) QDPOrderProof [EQUIVALENT, 26 ms] (33) QDP (34) QDPOrderProof [EQUIVALENT, 22 ms] (35) QDP (36) QDPOrderProof [EQUIVALENT, 0 ms] (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPSizeChangeProof [EQUIVALENT, 0 ms] (41) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(2nd(cons(X, cons(Y, Z)))) -> MARK(Y) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) MARK(2nd(X)) -> ACTIVE(2nd(mark(X))) MARK(2nd(X)) -> 2ND(mark(X)) MARK(2nd(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) 2ND(mark(X)) -> 2ND(X) 2ND(active(X)) -> 2ND(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 7 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: 2ND(active(X)) -> 2ND(X) 2ND(mark(X)) -> 2ND(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: 2ND(active(X)) -> 2ND(X) 2ND(mark(X)) -> 2ND(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *2ND(active(X)) -> 2ND(X) The graph contains the following edges 1 > 1 *2ND(mark(X)) -> 2ND(X) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(2nd(X)) -> ACTIVE(2nd(mark(X))) ACTIVE(2nd(cons(X, cons(Y, Z)))) -> MARK(Y) MARK(2nd(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( 2nd_1(x_1) ) = 2 POL( ACTIVE_1(x_1) ) = max{0, 2x_1 - 2} POL( cons_2(x_1, x_2) ) = max{0, -2} POL( from_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( mark_1(x_1) ) = 0 POL( active_1(x_1) ) = max{0, x_1 - 2} POL( MARK_1(x_1) ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 2nd(active(X)) -> 2nd(X) 2nd(mark(X)) -> 2nd(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(2nd(X)) -> ACTIVE(2nd(mark(X))) ACTIVE(2nd(cons(X, cons(Y, Z)))) -> MARK(Y) MARK(2nd(X)) -> MARK(X) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(2nd(cons(X, cons(Y, Z)))) -> MARK(Y) MARK(2nd(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(MARK(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(2nd(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(ACTIVE(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(from(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(active(x_1)) = [[-I]] + [[0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(2nd(X)) -> active(2nd(mark(X))) active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(active(X)) -> 2nd(X) 2nd(mark(X)) -> 2nd(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(2nd(X)) -> ACTIVE(2nd(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(2nd(X)) -> ACTIVE(2nd(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK 2nd(x1) = 2nd ACTIVE(x1) = x1 mark(x1) = mark from(x1) = from cons(x1, x2) = cons(x2) s(x1) = x1 active(x1) = active Recursive path order with status [RPO]. Quasi-Precedence: [MARK, from, active] > [2nd, mark, cons_1] Status: MARK: multiset status 2nd: multiset status mark: [] from: multiset status cons_1: multiset status active: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 2nd(active(X)) -> 2nd(X) 2nd(mark(X)) -> 2nd(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVE(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(MARK(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(active(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(2nd(x_1)) = [[-I]] + [[1A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) mark(2nd(X)) -> active(2nd(mark(X))) active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(active(X)) -> 2nd(X) 2nd(mark(X)) -> 2nd(X) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> MARK(X1) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ACTIVE(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(from(x_1)) = [[-I]] + [[1A]] * x_1 >>> <<< POL(MARK(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[1A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(mark(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(active(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(2nd(x_1)) = [[2A]] + [[0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(active(X)) -> s(X) s(mark(X)) -> s(X) from(active(X)) -> from(X) from(mark(X)) -> from(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) mark(2nd(X)) -> active(2nd(mark(X))) active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(active(X)) -> 2nd(X) 2nd(mark(X)) -> 2nd(X) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> ACTIVE(from(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = ACTIVE MARK(x1) = x1 cons(x1, x2) = cons from(x1) = from s(x1) = x1 Knuth-Bendix order [KBO] with precedence:ACTIVE > cons and weight map: from=2 ACTIVE=1 cons=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) mark(2nd(X)) -> active(2nd(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) 2nd(mark(X)) -> 2nd(X) 2nd(active(X)) -> 2nd(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (41) YES