/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) UsableRulesReductionPairsProof [EQUIVALENT, 11 ms] (13) QDP (14) PisEmptyProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 99 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x head(cons(n, x)) -> n weight(x) -> if(empty(x), empty(tail(x)), x) if(true, b, x) -> weight_undefined_error if(false, b, x) -> if2(b, x) if2(true, x) -> head(x) if2(false, x) -> weight(sum(x, cons(0, tail(tail(x))))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x head(cons(n, x)) -> n weight(x) -> if(empty(x), empty(tail(x)), x) if(true, b, x) -> weight_undefined_error if(false, b, x) -> if2(b, x) if2(true, x) -> head(x) if2(false, x) -> weight(sum(x, cons(0, tail(tail(x))))) The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) SUM(cons(0, x), y) -> SUM(x, y) WEIGHT(x) -> IF(empty(x), empty(tail(x)), x) WEIGHT(x) -> EMPTY(x) WEIGHT(x) -> EMPTY(tail(x)) WEIGHT(x) -> TAIL(x) IF(false, b, x) -> IF2(b, x) IF2(true, x) -> HEAD(x) IF2(false, x) -> WEIGHT(sum(x, cons(0, tail(tail(x))))) IF2(false, x) -> SUM(x, cons(0, tail(tail(x)))) IF2(false, x) -> TAIL(tail(x)) IF2(false, x) -> TAIL(x) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x head(cons(n, x)) -> n weight(x) -> if(empty(x), empty(tail(x)), x) if(true, b, x) -> weight_undefined_error if(false, b, x) -> if2(b, x) if2(true, x) -> head(x) if2(false, x) -> weight(sum(x, cons(0, tail(tail(x))))) The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x head(cons(n, x)) -> n weight(x) -> if(empty(x), empty(tail(x)), x) if(true, b, x) -> weight_undefined_error if(false, b, x) -> if2(b, x) if2(true, x) -> head(x) if2(false, x) -> weight(sum(x, cons(0, tail(tail(x))))) The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(SUM(x_1, x_2)) = 2*x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 2 + x_1 ---------------------------------------- (13) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x) -> WEIGHT(sum(x, cons(0, tail(tail(x))))) WEIGHT(x) -> IF(empty(x), empty(tail(x)), x) IF(false, b, x) -> IF2(b, x) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x head(cons(n, x)) -> n weight(x) -> if(empty(x), empty(tail(x)), x) if(true, b, x) -> weight_undefined_error if(false, b, x) -> if2(b, x) if2(true, x) -> head(x) if2(false, x) -> weight(sum(x, cons(0, tail(tail(x))))) The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x) -> WEIGHT(sum(x, cons(0, tail(tail(x))))) WEIGHT(x) -> IF(empty(x), empty(tail(x)), x) IF(false, b, x) -> IF2(b, x) The TRS R consists of the following rules: empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. head(cons(x0, x1)) weight(x0) if(true, x0, x1) if(false, x0, x1) if2(true, x0) if2(false, x0) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x) -> WEIGHT(sum(x, cons(0, tail(tail(x))))) WEIGHT(x) -> IF(empty(x), empty(tail(x)), x) IF(false, b, x) -> IF2(b, x) The TRS R consists of the following rules: empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. WEIGHT(x) -> IF(empty(x), empty(tail(x)), x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IF(x_1, x_2, x_3)) = [1/4] + [1/2]x_2 + [1/2]x_3 POL(IF2(x_1, x_2)) = [1/4] + [1/2]x_1 + [1/4]x_2 POL(WEIGHT(x_1)) = [1/2] + x_1 POL(cons(x_1, x_2)) = [1/4] + [4]x_2 POL(empty(x_1)) = [4]x_1 POL(false) = [1] POL(nil) = 0 POL(s(x_1)) = 0 POL(sum(x_1, x_2)) = x_2 POL(tail(x_1)) = [1/4]x_1 POL(true) = 0 The value of delta used in the strict ordering is 1/4. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: tail(nil) -> nil tail(cons(n, x)) -> x sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y empty(nil) -> true empty(cons(n, x)) -> false ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x) -> WEIGHT(sum(x, cons(0, tail(tail(x))))) IF(false, b, x) -> IF2(b, x) The TRS R consists of the following rules: empty(nil) -> true empty(cons(n, x)) -> false tail(nil) -> nil tail(cons(n, x)) -> x sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) empty(nil) empty(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (24) TRUE