/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 22 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) NonInfProof [EQUIVALENT, 0 ms] (27) AND (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) TRUE (31) QDP (32) DependencyGraphProof [EQUIVALENT, 0 ms] (33) TRUE (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QReductionProof [EQUIVALENT, 0 ms] (38) QDP (39) QDPOrderProof [EQUIVALENT, 95 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) The TRS R 2 is a -> b a -> c The signature Sigma is {a, b, c} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(xs) -> PRODITER(xs, s(0)) PRODITER(xs, x) -> IFPROD(isempty(xs), xs, x) PRODITER(xs, x) -> ISEMPTY(xs) IFPROD(false, xs, x) -> PRODITER(tail(xs), times(x, head(xs))) IFPROD(false, xs, x) -> TAIL(xs) IFPROD(false, xs, x) -> TIMES(x, head(xs)) IFPROD(false, xs, x) -> HEAD(xs) PLUS(s(x), y) -> PLUS(x, y) TIMES(x, y) -> TIMESITER(x, y, 0, 0) TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) TIMESITER(x, y, z, u) -> GE(u, x) IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) IFTIMES(false, x, y, z, u) -> PLUS(y, z) GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(s(x), s(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) the following chains were created: *We consider the chain TIMESITER(x4, x5, x6, x7) -> IFTIMES(ge(x7, x4), x4, x5, x6, x7), IFTIMES(false, x8, x9, x10, x11) -> TIMESITER(x8, x9, plus(x9, x10), s(x11)) which results in the following constraint: (1) (IFTIMES(ge(x7, x4), x4, x5, x6, x7)=IFTIMES(false, x8, x9, x10, x11) ==> IFTIMES(false, x8, x9, x10, x11)_>=_TIMESITER(x8, x9, plus(x9, x10), s(x11))) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (ge(x7, x4)=false ==> IFTIMES(false, x4, x5, x6, x7)_>=_TIMESITER(x4, x5, plus(x5, x6), s(x7))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x7, x4)=false which results in the following new constraints: (3) (false=false ==> IFTIMES(false, s(x25), x5, x6, 0)_>=_TIMESITER(s(x25), x5, plus(x5, x6), s(0))) (4) (ge(x27, x26)=false & (\/x28,x29:ge(x27, x26)=false ==> IFTIMES(false, x26, x28, x29, x27)_>=_TIMESITER(x26, x28, plus(x28, x29), s(x27))) ==> IFTIMES(false, s(x26), x5, x6, s(x27))_>=_TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27)))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (IFTIMES(false, s(x25), x5, x6, 0)_>=_TIMESITER(s(x25), x5, plus(x5, x6), s(0))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (\/x28,x29:ge(x27, x26)=false ==> IFTIMES(false, x26, x28, x29, x27)_>=_TIMESITER(x26, x28, plus(x28, x29), s(x27))) with sigma = [x28 / x5, x29 / x6] which results in the following new constraint: (6) (IFTIMES(false, x26, x5, x6, x27)_>=_TIMESITER(x26, x5, plus(x5, x6), s(x27)) ==> IFTIMES(false, s(x26), x5, x6, s(x27))_>=_TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27)))) For Pair TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) the following chains were created: *We consider the chain IFTIMES(false, x12, x13, x14, x15) -> TIMESITER(x12, x13, plus(x13, x14), s(x15)), TIMESITER(x16, x17, x18, x19) -> IFTIMES(ge(x19, x16), x16, x17, x18, x19) which results in the following constraint: (1) (TIMESITER(x12, x13, plus(x13, x14), s(x15))=TIMESITER(x16, x17, x18, x19) ==> TIMESITER(x16, x17, x18, x19)_>=_IFTIMES(ge(x19, x16), x16, x17, x18, x19)) We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint: (2) (TIMESITER(x12, x13, x18, s(x15))_>=_IFTIMES(ge(s(x15), x12), x12, x13, x18, s(x15))) To summarize, we get the following constraints P__>=_ for the following pairs. *IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) *(IFTIMES(false, s(x25), x5, x6, 0)_>=_TIMESITER(s(x25), x5, plus(x5, x6), s(0))) *(IFTIMES(false, x26, x5, x6, x27)_>=_TIMESITER(x26, x5, plus(x5, x6), s(x27)) ==> IFTIMES(false, s(x26), x5, x6, s(x27))_>=_TIMESITER(s(x26), x5, plus(x5, x6), s(s(x27)))) *TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) *(TIMESITER(x12, x13, x18, s(x15))_>=_IFTIMES(ge(s(x15), x12), x12, x13, x18, s(x15))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(IFTIMES(x_1, x_2, x_3, x_4, x_5)) = -1 - x_1 + x_2 - x_5 POL(TIMESITER(x_1, x_2, x_3, x_4)) = -1 + x_1 - x_4 POL(c) = -2 POL(false) = 1 POL(ge(x_1, x_2)) = 1 POL(plus(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 1 + x_1 POL(true) = 1 The following pairs are in P_>: TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) The following pairs are in P_bound: IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) The following rules are usable: true -> ge(x, 0) false -> ge(0, s(y)) ge(x, y) -> ge(s(x), s(y)) ---------------------------------------- (27) Complex Obligation (AND) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: IFTIMES(false, x, y, z, u) -> TIMESITER(x, y, plus(y, z), s(u)) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (30) TRUE ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: TIMESITER(x, y, z, u) -> IFTIMES(ge(u, x), x, y, z, u) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (33) TRUE ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: IFPROD(false, xs, x) -> PRODITER(tail(xs), times(x, head(xs))) PRODITER(xs, x) -> IFPROD(isempty(xs), xs, x) The TRS R consists of the following rules: prod(xs) -> prodIter(xs, s(0)) prodIter(xs, x) -> ifProd(isempty(xs), xs, x) ifProd(true, xs, x) -> x ifProd(false, xs, x) -> prodIter(tail(xs), times(x, head(xs))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0, 0) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) ifTimes(true, x, y, z, u) -> z ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) a -> b a -> c The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: IFPROD(false, xs, x) -> PRODITER(tail(xs), times(x, head(xs))) PRODITER(xs, x) -> IFPROD(isempty(xs), xs, x) The TRS R consists of the following rules: isempty(nil) -> true isempty(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(nil) -> error head(cons(x, xs)) -> x times(x, y) -> timesIter(x, y, 0, 0) ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) ifTimes(true, x, y, z, u) -> z The set Q consists of the following terms: prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. prod(x0) prodIter(x0, x1) ifProd(true, x0, x1) ifProd(false, x0, x1) a ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: IFPROD(false, xs, x) -> PRODITER(tail(xs), times(x, head(xs))) PRODITER(xs, x) -> IFPROD(isempty(xs), xs, x) The TRS R consists of the following rules: isempty(nil) -> true isempty(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(nil) -> error head(cons(x, xs)) -> x times(x, y) -> timesIter(x, y, 0, 0) ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) ifTimes(true, x, y, z, u) -> z The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IFPROD(false, xs, x) -> PRODITER(tail(xs), times(x, head(xs))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IFPROD(x_1, x_2, x_3)) = [1/4]x_1 + [1/2]x_2 POL(PRODITER(x_1, x_2)) = x_1 POL(cons(x_1, x_2)) = [1/2] + [2]x_1 + [4]x_2 POL(error) = 0 POL(false) = [1/4] POL(ge(x_1, x_2)) = 0 POL(head(x_1)) = x_1 POL(ifTimes(x_1, x_2, x_3, x_4, x_5)) = [1] + x_2 + x_3 + x_4 + x_5 POL(isempty(x_1)) = [1/2]x_1 POL(nil) = 0 POL(plus(x_1, x_2)) = [2]x_1 + [4]x_2 POL(s(x_1)) = [1/2] POL(tail(x_1)) = [1/4]x_1 POL(times(x_1, x_2)) = 0 POL(timesIter(x_1, x_2, x_3, x_4)) = [1] + x_1 + x_2 POL(true) = 0 The value of delta used in the strict ordering is 1/16. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: tail(nil) -> nil tail(cons(x, xs)) -> xs isempty(nil) -> true isempty(cons(x, xs)) -> false ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: PRODITER(xs, x) -> IFPROD(isempty(xs), xs, x) The TRS R consists of the following rules: isempty(nil) -> true isempty(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs head(nil) -> error head(cons(x, xs)) -> x times(x, y) -> timesIter(x, y, 0, 0) ifTimes(false, x, y, z, u) -> timesIter(x, y, plus(y, z), s(u)) timesIter(x, y, z, u) -> ifTimes(ge(u, x), x, y, z, u) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) ifTimes(true, x, y, z, u) -> z The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(x0, x1) timesIter(x0, x1, x2, x3) ifTimes(true, x0, x1, x2, x3) ifTimes(false, x0, x1, x2, x3) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (42) TRUE