/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesReductionPairsProof [EQUIVALENT, 28 ms] (22) QDP (23) TransformationProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) SemLabProof [SOUND, 13.0 s] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 0 ms] (36) QDP (37) QDPOrderProof [EQUIVALENT, 15 ms] (38) QDP (39) QDPOrderProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPOrderProof [EQUIVALENT, 18 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 4 ms] (46) QDP (47) PisEmptyProof [EQUIVALENT, 0 ms] (48) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(b, c, x)) -> F(x, x, x) ACTIVE(f(x, y, z)) -> F(x, y, active(z)) ACTIVE(f(x, y, z)) -> ACTIVE(z) F(x, y, mark(z)) -> F(x, y, z) PROPER(f(x, y, z)) -> F(proper(x), proper(y), proper(z)) PROPER(f(x, y, z)) -> PROPER(x) PROPER(f(x, y, z)) -> PROPER(y) PROPER(f(x, y, z)) -> PROPER(z) F(ok(x), ok(y), ok(z)) -> F(x, y, z) TOP(mark(x)) -> TOP(proper(x)) TOP(mark(x)) -> PROPER(x) TOP(ok(x)) -> TOP(active(x)) TOP(ok(x)) -> ACTIVE(x) The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: F(ok(x), ok(y), ok(z)) -> F(x, y, z) F(x, y, mark(z)) -> F(x, y, z) The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(ok(x), ok(y), ok(z)) -> F(x, y, z) F(x, y, mark(z)) -> F(x, y, z) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(ok(x), ok(y), ok(z)) -> F(x, y, z) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *F(x, y, mark(z)) -> F(x, y, z) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: PROPER(f(x, y, z)) -> PROPER(y) PROPER(f(x, y, z)) -> PROPER(x) PROPER(f(x, y, z)) -> PROPER(z) The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PROPER(f(x, y, z)) -> PROPER(y) PROPER(f(x, y, z)) -> PROPER(x) PROPER(f(x, y, z)) -> PROPER(z) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PROPER(f(x, y, z)) -> PROPER(y) The graph contains the following edges 1 > 1 *PROPER(f(x, y, z)) -> PROPER(x) The graph contains the following edges 1 > 1 *PROPER(f(x, y, z)) -> PROPER(z) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(x, y, z)) -> ACTIVE(z) The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(x, y, z)) -> ACTIVE(z) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVE(f(x, y, z)) -> ACTIVE(z) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(ok(x)) -> TOP(active(x)) TOP(mark(x)) -> TOP(proper(x)) The TRS R consists of the following rules: active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) f(x, y, mark(z)) -> mark(f(x, y, z)) active(d) -> mark(c) proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: top(mark(x)) -> top(proper(x)) top(ok(x)) -> top(active(x)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(TOP(x_1)) = x_1 POL(active(x_1)) = 2*x_1 POL(b) = 0 POL(c) = 0 POL(d) = 0 POL(f(x_1, x_2, x_3)) = x_1 + x_2 + 2*x_3 POL(m(x_1)) = 2*x_1 POL(mark(x_1)) = x_1 POL(ok(x_1)) = 2*x_1 POL(proper(x_1)) = x_1 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(ok(x)) -> TOP(active(x)) TOP(mark(x)) -> TOP(proper(x)) The TRS R consists of the following rules: proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(x, y, mark(z)) -> mark(f(x, y, z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) active(d) -> mark(c) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(ok(x)) -> TOP(active(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0))),TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0)))) (TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2))),TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2)))) (TOP(ok(d)) -> TOP(m(b)),TOP(ok(d)) -> TOP(m(b))) (TOP(ok(d)) -> TOP(mark(c)),TOP(ok(d)) -> TOP(mark(c))) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(proper(x)) TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0))) TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2))) TOP(ok(d)) -> TOP(m(b)) TOP(ok(d)) -> TOP(mark(c)) The TRS R consists of the following rules: proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(x, y, mark(z)) -> mark(f(x, y, z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) active(d) -> mark(c) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(proper(x)) TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0))) TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2))) TOP(ok(d)) -> TOP(mark(c)) The TRS R consists of the following rules: proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(x, y, mark(z)) -> mark(f(x, y, z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) active(d) -> mark(c) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule TOP(mark(x)) -> TOP(proper(x)) at position [0] we obtained the following new rules [LPAR04]: (TOP(mark(b)) -> TOP(ok(b)),TOP(mark(b)) -> TOP(ok(b))) (TOP(mark(c)) -> TOP(ok(c)),TOP(mark(c)) -> TOP(ok(c))) (TOP(mark(d)) -> TOP(ok(d)),TOP(mark(d)) -> TOP(ok(d))) (TOP(mark(f(x0, x1, x2))) -> TOP(f(proper(x0), proper(x1), proper(x2))),TOP(mark(f(x0, x1, x2))) -> TOP(f(proper(x0), proper(x1), proper(x2)))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0))) TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2))) TOP(ok(d)) -> TOP(mark(c)) TOP(mark(b)) -> TOP(ok(b)) TOP(mark(c)) -> TOP(ok(c)) TOP(mark(d)) -> TOP(ok(d)) TOP(mark(f(x0, x1, x2))) -> TOP(f(proper(x0), proper(x1), proper(x2))) The TRS R consists of the following rules: proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(x, y, mark(z)) -> mark(f(x, y, z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) active(d) -> mark(c) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(f(x0, x1, x2))) -> TOP(f(proper(x0), proper(x1), proper(x2))) TOP(ok(f(b, c, x0))) -> TOP(mark(f(x0, x0, x0))) TOP(ok(f(x0, x1, x2))) -> TOP(f(x0, x1, active(x2))) The TRS R consists of the following rules: proper(b) -> ok(b) proper(c) -> ok(c) proper(d) -> ok(d) proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z)) f(x, y, mark(z)) -> mark(f(x, y, z)) f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z)) active(f(b, c, x)) -> mark(f(x, x, x)) active(f(x, y, z)) -> f(x, y, active(z)) active(d) -> m(b) active(d) -> mark(c) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. active: 0 b: 1 c: 0 d: 0 proper: x0 f: 0 m: 0 TOP: 0 ok: x0 mark: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.1-0-0(b., c., x0))) -> TOP.0(mark.0(f.0-0-0(x0, x0, x0))) TOP.0(ok.0(f.1-0-1(b., c., x0))) -> TOP.0(mark.0(f.1-1-1(x0, x0, x0))) TOP.0(mark.0(f.0-0-1(x0, x1, x2))) -> TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.0-1-1(x0, x1, x2))) -> TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-1-1(x0, x1, x2))) -> TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-0-1(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.1(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-1(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.1(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.1(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-1(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.1(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(ok.0(f.1-0-0(b., c., x0))) -> TOP.0(mark.0(f.0-0-0(x0, x0, x0))) TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.1-0-1(b., c., x0))) -> TOP.0(mark.0(f.1-1-1(x0, x0, x0))) TOP.0(mark.0(f.0-0-1(x0, x1, x2))) -> TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.0-1-1(x0, x1, x2))) -> TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-1-1(x0, x1, x2))) -> TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(ok.0(f.1-0-0(b., c., x0))) -> TOP.0(mark.0(f.0-0-0(x0, x0, x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = 0 POL(active.1(x_1)) = x_1 POL(b.) = 0 POL(c.) = 1 POL(d.) = 0 POL(f.0-0-0(x_1, x_2, x_3)) = 0 POL(f.0-0-1(x_1, x_2, x_3)) = 0 POL(f.0-1-0(x_1, x_2, x_3)) = 0 POL(f.0-1-1(x_1, x_2, x_3)) = 0 POL(f.1-0-0(x_1, x_2, x_3)) = 1 + x_2 POL(f.1-0-1(x_1, x_2, x_3)) = 0 POL(f.1-1-0(x_1, x_2, x_3)) = 0 POL(f.1-1-1(x_1, x_2, x_3)) = 0 POL(m.1(x_1)) = 1 + x_1 POL(mark.0(x_1)) = x_1 POL(mark.1(x_1)) = x_1 POL(ok.0(x_1)) = x_1 POL(ok.1(x_1)) = 0 POL(proper.0(x_1)) = x_1 POL(proper.1(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.1-0-1(b., c., x0))) -> TOP.0(mark.0(f.1-1-1(x0, x0, x0))) TOP.0(mark.0(f.0-0-1(x0, x1, x2))) -> TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.0-1-1(x0, x1, x2))) -> TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-1-1(x0, x1, x2))) -> TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(mark.0(f.0-0-1(x0, x1, x2))) -> TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.0-1-1(x0, x1, x2))) -> TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-1(x0, x1, x2))) -> TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = 0 POL(active.1(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(d.) = 0 POL(f.0-0-0(x_1, x_2, x_3)) = 1 POL(f.0-0-1(x_1, x_2, x_3)) = 0 POL(f.0-1-0(x_1, x_2, x_3)) = 1 POL(f.0-1-1(x_1, x_2, x_3)) = 0 POL(f.1-0-0(x_1, x_2, x_3)) = 1 POL(f.1-0-1(x_1, x_2, x_3)) = 1 POL(f.1-1-0(x_1, x_2, x_3)) = 1 POL(f.1-1-1(x_1, x_2, x_3)) = 0 POL(m.1(x_1)) = 1 + x_1 POL(mark.0(x_1)) = 1 POL(mark.1(x_1)) = x_1 POL(ok.0(x_1)) = x_1 POL(ok.1(x_1)) = 0 POL(proper.0(x_1)) = 0 POL(proper.1(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.1-0-1(b., c., x0))) -> TOP.0(mark.0(f.1-1-1(x0, x0, x0))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(ok.0(f.1-0-1(b., c., x0))) -> TOP.0(mark.0(f.1-1-1(x0, x0, x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = 0 POL(active.1(x_1)) = x_1 POL(b.) = 1 POL(c.) = 0 POL(d.) = 0 POL(f.0-0-0(x_1, x_2, x_3)) = 0 POL(f.0-0-1(x_1, x_2, x_3)) = 0 POL(f.0-1-0(x_1, x_2, x_3)) = 0 POL(f.0-1-1(x_1, x_2, x_3)) = 0 POL(f.1-0-0(x_1, x_2, x_3)) = 1 + x_1 POL(f.1-0-1(x_1, x_2, x_3)) = 1 + x_1 POL(f.1-1-0(x_1, x_2, x_3)) = 0 POL(f.1-1-1(x_1, x_2, x_3)) = 0 POL(m.1(x_1)) = 1 + x_1 POL(mark.0(x_1)) = x_1 POL(mark.1(x_1)) = x_1 POL(ok.0(x_1)) = x_1 POL(ok.1(x_1)) = x_1 POL(proper.0(x_1)) = 0 POL(proper.1(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) proper.1(b.) -> ok.1(b.) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(mark.0(f.1-0-1(x0, x1, x2))) -> TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = 0 POL(active.1(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(d.) = 0 POL(f.0-0-0(x_1, x_2, x_3)) = 1 POL(f.0-0-1(x_1, x_2, x_3)) = 0 POL(f.0-1-0(x_1, x_2, x_3)) = 1 POL(f.0-1-1(x_1, x_2, x_3)) = 0 POL(f.1-0-0(x_1, x_2, x_3)) = 1 POL(f.1-0-1(x_1, x_2, x_3)) = 0 POL(f.1-1-0(x_1, x_2, x_3)) = 1 POL(f.1-1-1(x_1, x_2, x_3)) = 0 POL(m.1(x_1)) = 1 + x_1 POL(mark.0(x_1)) = 1 POL(mark.1(x_1)) = x_1 POL(ok.0(x_1)) = x_1 POL(ok.1(x_1)) = 0 POL(proper.0(x_1)) = 0 POL(proper.1(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(mark.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2))) TOP.0(mark.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2))) TOP.0(mark.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = x_1 POL(active.1(x_1)) = 0 POL(b.) = 1 POL(c.) = 0 POL(d.) = 1 POL(f.0-0-0(x_1, x_2, x_3)) = x_3 POL(f.0-0-1(x_1, x_2, x_3)) = 0 POL(f.0-1-0(x_1, x_2, x_3)) = 1 + x_3 POL(f.0-1-1(x_1, x_2, x_3)) = 1 POL(f.1-0-0(x_1, x_2, x_3)) = 1 + x_1 + x_3 POL(f.1-0-1(x_1, x_2, x_3)) = 1 + x_1 POL(f.1-1-0(x_1, x_2, x_3)) = 1 + x_3 POL(f.1-1-1(x_1, x_2, x_3)) = 1 POL(m.1(x_1)) = x_1 POL(mark.0(x_1)) = 1 + x_1 POL(mark.1(x_1)) = 1 + x_1 POL(ok.0(x_1)) = x_1 POL(ok.1(x_1)) = x_1 POL(proper.0(x_1)) = x_1 POL(proper.1(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) proper.1(b.) -> ok.1(b.) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP.0(ok.0(f.0-0-0(x0, x1, x2))) -> TOP.0(f.0-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.0-1-0(x0, x1, x2))) -> TOP.0(f.0-1-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-0-0(x0, x1, x2))) -> TOP.0(f.1-0-0(x0, x1, active.0(x2))) TOP.0(ok.0(f.1-1-0(x0, x1, x2))) -> TOP.0(f.1-1-0(x0, x1, active.0(x2))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(TOP.0(x_1)) = x_1 POL(active.0(x_1)) = 0 POL(active.1(x_1)) = x_1 POL(b.) = 0 POL(c.) = 0 POL(d.) = 1 POL(f.0-0-0(x_1, x_2, x_3)) = x_1 POL(f.0-0-1(x_1, x_2, x_3)) = x_1 + x_3 POL(f.0-1-0(x_1, x_2, x_3)) = x_1 POL(f.0-1-1(x_1, x_2, x_3)) = x_1 + x_3 POL(f.1-0-0(x_1, x_2, x_3)) = x_1 POL(f.1-0-1(x_1, x_2, x_3)) = 0 POL(f.1-1-0(x_1, x_2, x_3)) = x_1 POL(f.1-1-1(x_1, x_2, x_3)) = 0 POL(m.1(x_1)) = 1 + x_1 POL(mark.0(x_1)) = 0 POL(mark.1(x_1)) = x_1 POL(ok.0(x_1)) = 1 + x_1 POL(ok.1(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) ---------------------------------------- (46) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: proper.1(b.) -> ok.1(b.) proper.0(c.) -> ok.0(c.) proper.0(d.) -> ok.0(d.) proper.0(f.0-0-0(x, y, z)) -> f.0-0-0(proper.0(x), proper.0(y), proper.0(z)) proper.0(f.0-0-1(x, y, z)) -> f.0-0-1(proper.0(x), proper.0(y), proper.1(z)) proper.0(f.0-1-0(x, y, z)) -> f.0-1-0(proper.0(x), proper.1(y), proper.0(z)) proper.0(f.0-1-1(x, y, z)) -> f.0-1-1(proper.0(x), proper.1(y), proper.1(z)) proper.0(f.1-0-0(x, y, z)) -> f.1-0-0(proper.1(x), proper.0(y), proper.0(z)) proper.0(f.1-0-1(x, y, z)) -> f.1-0-1(proper.1(x), proper.0(y), proper.1(z)) proper.0(f.1-1-0(x, y, z)) -> f.1-1-0(proper.1(x), proper.1(y), proper.0(z)) proper.0(f.1-1-1(x, y, z)) -> f.1-1-1(proper.1(x), proper.1(y), proper.1(z)) f.0-0-0(x, y, mark.0(z)) -> mark.0(f.0-0-0(x, y, z)) f.0-0-0(x, y, mark.1(z)) -> mark.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, mark.0(z)) -> mark.0(f.0-1-0(x, y, z)) f.0-1-0(x, y, mark.1(z)) -> mark.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, mark.0(z)) -> mark.0(f.1-0-0(x, y, z)) f.1-0-0(x, y, mark.1(z)) -> mark.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, mark.0(z)) -> mark.0(f.1-1-0(x, y, z)) f.1-1-0(x, y, mark.1(z)) -> mark.0(f.1-1-1(x, y, z)) f.0-0-0(ok.0(x), ok.0(y), ok.0(z)) -> ok.0(f.0-0-0(x, y, z)) f.0-0-1(ok.0(x), ok.0(y), ok.1(z)) -> ok.0(f.0-0-1(x, y, z)) f.0-1-0(ok.0(x), ok.1(y), ok.0(z)) -> ok.0(f.0-1-0(x, y, z)) f.0-1-1(ok.0(x), ok.1(y), ok.1(z)) -> ok.0(f.0-1-1(x, y, z)) f.1-0-0(ok.1(x), ok.0(y), ok.0(z)) -> ok.0(f.1-0-0(x, y, z)) f.1-0-1(ok.1(x), ok.0(y), ok.1(z)) -> ok.0(f.1-0-1(x, y, z)) f.1-1-0(ok.1(x), ok.1(y), ok.0(z)) -> ok.0(f.1-1-0(x, y, z)) f.1-1-1(ok.1(x), ok.1(y), ok.1(z)) -> ok.0(f.1-1-1(x, y, z)) active.0(f.1-0-0(b., c., x)) -> mark.0(f.0-0-0(x, x, x)) active.0(f.1-0-1(b., c., x)) -> mark.0(f.1-1-1(x, x, x)) active.0(f.0-0-0(x, y, z)) -> f.0-0-0(x, y, active.0(z)) active.0(f.0-0-1(x, y, z)) -> f.0-0-0(x, y, active.1(z)) active.0(f.0-1-0(x, y, z)) -> f.0-1-0(x, y, active.0(z)) active.0(f.0-1-1(x, y, z)) -> f.0-1-0(x, y, active.1(z)) active.0(f.1-0-0(x, y, z)) -> f.1-0-0(x, y, active.0(z)) active.0(f.1-0-1(x, y, z)) -> f.1-0-0(x, y, active.1(z)) active.0(f.1-1-0(x, y, z)) -> f.1-1-0(x, y, active.0(z)) active.0(f.1-1-1(x, y, z)) -> f.1-1-0(x, y, active.1(z)) active.0(d.) -> m.1(b.) active.0(d.) -> mark.0(c.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (48) YES