/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 20 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) DependencyGraphProof [EQUIVALENT, 0 ms] (44) QDP (45) UsableRulesProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QReductionProof [EQUIVALENT, 0 ms] (52) QDP (53) TransformationProof [EQUIVALENT, 0 ms] (54) QDP (55) TransformationProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 0 ms] (58) QDP (59) TransformationProof [EQUIVALENT, 0 ms] (60) QDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) QDP (63) MRRProof [EQUIVALENT, 0 ms] (64) QDP (65) PisEmptyProof [EQUIVALENT, 0 ms] (66) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) half(0) -> 0 le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError The TRS R 2 is f -> g f -> h The signature Sigma is {f, g, h} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) LE(s(x), s(y)) -> LE(x, y) INC(s(x)) -> INC(x) LOGARITHM(x) -> LOGITER(x, 0) LOGITER(x, y) -> IF(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) LOGITER(x, y) -> LE(s(0), x) LOGITER(x, y) -> LE(s(s(0)), x) LOGITER(x, y) -> HALF(x) LOGITER(x, y) -> INC(y) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) R is empty. The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: INC(s(x)) -> INC(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *INC(s(x)) -> INC(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(x, y) -> IF(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(x, y) -> IF(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. logarithm(x0) logIter(x0, x1) if(false, x0, x1, x2) if(true, false, x0, s(x1)) if(true, true, x0, x1) f ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(x, y) -> IF(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule LOGITER(x, y) -> IF(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) at position [0] we obtained the following new rules [LPAR04]: (LOGITER(0, y1) -> IF(false, le(s(s(0)), 0), half(0), inc(y1)),LOGITER(0, y1) -> IF(false, le(s(s(0)), 0), half(0), inc(y1))) (LOGITER(s(x1), y1) -> IF(le(0, x1), le(s(s(0)), s(x1)), half(s(x1)), inc(y1)),LOGITER(s(x1), y1) -> IF(le(0, x1), le(s(s(0)), s(x1)), half(s(x1)), inc(y1))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(0, y1) -> IF(false, le(s(s(0)), 0), half(0), inc(y1)) LOGITER(s(x1), y1) -> IF(le(0, x1), le(s(s(0)), s(x1)), half(s(x1)), inc(y1)) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(x1), y1) -> IF(le(0, x1), le(s(s(0)), s(x1)), half(s(x1)), inc(y1)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule LOGITER(s(x1), y1) -> IF(le(0, x1), le(s(s(0)), s(x1)), half(s(x1)), inc(y1)) at position [0] we obtained the following new rules [LPAR04]: (LOGITER(s(x1), y1) -> IF(true, le(s(s(0)), s(x1)), half(s(x1)), inc(y1)),LOGITER(s(x1), y1) -> IF(true, le(s(s(0)), s(x1)), half(s(x1)), inc(y1))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(x1), y1) -> IF(true, le(s(s(0)), s(x1)), half(s(x1)), inc(y1)) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule LOGITER(s(x1), y1) -> IF(true, le(s(s(0)), s(x1)), half(s(x1)), inc(y1)) at position [1] we obtained the following new rules [LPAR04]: (LOGITER(s(x1), y1) -> IF(true, le(s(0), x1), half(s(x1)), inc(y1)),LOGITER(s(x1), y1) -> IF(true, le(s(0), x1), half(s(x1)), inc(y1))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(x1), y1) -> IF(true, le(s(0), x1), half(s(x1)), inc(y1)) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule LOGITER(s(x1), y1) -> IF(true, le(s(0), x1), half(s(x1)), inc(y1)) at position [1] we obtained the following new rules [LPAR04]: (LOGITER(s(0), y1) -> IF(true, false, half(s(0)), inc(y1)),LOGITER(s(0), y1) -> IF(true, false, half(s(0)), inc(y1))) (LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1)),LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(0), y1) -> IF(true, false, half(s(0)), inc(y1)) LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1)) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) le(0, y) -> true The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1)) IF(true, true, x, y) -> LOGITER(x, y) The TRS R consists of the following rules: le(0, y) -> true half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule LOGITER(s(s(x1)), y1) -> IF(true, le(0, x1), half(s(s(x1))), inc(y1)) at position [1] we obtained the following new rules [LPAR04]: (LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1)),LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1)) The TRS R consists of the following rules: le(0, y) -> true half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1)) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1)) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule LOGITER(s(s(x1)), y1) -> IF(true, true, half(s(s(x1))), inc(y1)) at position [2] we obtained the following new rules [LPAR04]: (LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1)),LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1))) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, x, y) -> LOGITER(x, y) LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1)) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF(true, true, x, y) -> LOGITER(x, y) we obtained the following new rules [LPAR04]: (IF(true, true, s(y_0), y_1) -> LOGITER(s(y_0), y_1),IF(true, true, s(y_0), y_1) -> LOGITER(s(y_0), y_1)) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1)) IF(true, true, s(y_0), y_1) -> LOGITER(s(y_0), y_1) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule IF(true, true, s(y_0), y_1) -> LOGITER(s(y_0), y_1) we obtained the following new rules [LPAR04]: (IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1),IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1)) IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule LOGITER(s(s(x1)), y1) -> IF(true, true, s(half(x1)), inc(y1)) at position [2,0] we obtained the following new rules [LPAR04]: (LOGITER(s(s(s(s(x0)))), y1) -> IF(true, true, s(s(half(x0))), inc(y1)),LOGITER(s(s(s(s(x0)))), y1) -> IF(true, true, s(s(half(x0))), inc(y1))) (LOGITER(s(s(0)), y1) -> IF(true, true, s(0), inc(y1)),LOGITER(s(s(0)), y1) -> IF(true, true, s(0), inc(y1))) (LOGITER(s(s(s(0))), y1) -> IF(true, true, s(0), inc(y1)),LOGITER(s(s(s(0))), y1) -> IF(true, true, s(0), inc(y1))) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1) LOGITER(s(s(s(s(x0)))), y1) -> IF(true, true, s(s(half(x0))), inc(y1)) LOGITER(s(s(0)), y1) -> IF(true, true, s(0), inc(y1)) LOGITER(s(s(s(0))), y1) -> IF(true, true, s(0), inc(y1)) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: LOGITER(s(s(s(s(x0)))), y1) -> IF(true, true, s(s(half(x0))), inc(y1)) IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: LOGITER(s(s(s(s(x0)))), y1) -> IF(true, true, s(s(half(x0))), inc(y1)) IF(true, true, s(s(y_0)), x1) -> LOGITER(s(s(y_0)), x1) Strictly oriented rules of the TRS R: half(s(s(x))) -> s(half(x)) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) half(0) -> 0 half(s(0)) -> 0 Used ordering: Knuth-Bendix order [KBO] with precedence:half_1 > true > IF_4 > LOGITER_2 > 0 > inc_1 > s_1 and weight map: 0=1 true=10 half_1=0 s_1=2 inc_1=3 LOGITER_2=20 IF_4=0 The variable weight is 1 ---------------------------------------- (64) Obligation: Q DP problem: P is empty. R is empty. The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) inc(s(x0)) inc(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (66) YES