/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) MRRProof [EQUIVALENT, 0 ms] (9) QDP (10) PisEmptyProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) MNOCProof [EQUIVALENT, 0 ms] (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) MNOCProof [EQUIVALENT, 0 ms] (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 0(y)) -> 0^1(+(x, y)) +^1(0(x), 0(y)) -> +^1(x, y) +^1(0(x), 1(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> 0^1(+(+(x, y), 1(#))) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) *^1(0(x), y) -> 0^1(*(x, y)) *^1(0(x), y) -> *^1(x, y) *^1(1(x), y) -> +^1(0(*(x, y)), y) *^1(1(x), y) -> 0^1(*(x, y)) *^1(1(x), y) -> *^1(x, y) SUM(nil) -> 0^1(#) SUM(cons(x, l)) -> +^1(x, sum(l)) SUM(cons(x, l)) -> SUM(l) PROD(cons(x, l)) -> *^1(x, prod(l)) PROD(cons(x, l)) -> PROD(l) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 8 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) The TRS R consists of the following rules: +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) Strictly oriented rules of the TRS R: +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) 0(#) -> # Used ordering: Knuth-Bendix order [KBO] with precedence:# > +^1_2 > +_2 > 1_1 > 0_1 and weight map: #=2 0_1=1 1_1=3 +_2=0 +^1_2=0 The variable weight is 1 ---------------------------------------- (9) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(x, l)) -> SUM(l) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(x, l)) -> SUM(l) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) The set Q consists of the following terms: 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(x, l)) -> SUM(l) R is empty. The set Q consists of the following terms: 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(x, l)) -> SUM(l) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SUM(cons(x, l)) -> SUM(l) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: *^1(1(x), y) -> *^1(x, y) *^1(0(x), y) -> *^1(x, y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: *^1(1(x), y) -> *^1(x, y) *^1(0(x), y) -> *^1(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: **^1(1(x), y) -> *^1(x, y) The graph contains the following edges 1 > 1, 2 >= 2 **^1(0(x), y) -> *^1(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(cons(x, l)) -> PROD(l) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(cons(x, l)) -> PROD(l) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) The set Q consists of the following terms: 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(cons(x, l)) -> PROD(l) R is empty. The set Q consists of the following terms: 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 0(#) +(x0, #) +(#, x0) +(0(x0), 0(x1)) +(0(x0), 1(x1)) +(1(x0), 0(x1)) +(1(x0), 1(x1)) *(#, x0) *(0(x0), x1) *(1(x0), x1) sum(nil) sum(cons(x0, x1)) prod(nil) prod(cons(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: PROD(cons(x, l)) -> PROD(l) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PROD(cons(x, l)) -> PROD(l) The graph contains the following edges 1 > 1 ---------------------------------------- (34) YES