/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) MRRProof [EQUIVALENT, 14 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 2670 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(c(b(x)))) -> A(1, b(c(x))) C(c(c(b(x)))) -> B(c(x)) C(c(c(b(x)))) -> C(x) B(c(b(c(x)))) -> A(0, a(1, x)) B(c(b(c(x)))) -> A(1, x) A(0, x) -> C(c(x)) A(0, x) -> C(x) A(1, x) -> C(b(x)) A(1, x) -> B(x) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: C(c(c(b(x)))) -> B(c(x)) C(c(c(b(x)))) -> C(x) B(c(b(c(x)))) -> A(1, x) A(0, x) -> C(x) A(1, x) -> B(x) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(1) = 0 POL(A(x_1, x_2)) = 1 + x_1 + x_2 POL(B(x_1)) = x_1 POL(C(x_1)) = x_1 POL(a(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(b(x_1)) = 1 + x_1 POL(c(x_1)) = 1 + x_1 ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(c(b(x)))) -> A(1, b(c(x))) B(c(b(c(x)))) -> A(0, a(1, x)) A(0, x) -> C(c(x)) A(1, x) -> C(b(x)) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A(1, x) -> C(b(x)) C(c(c(b(x)))) -> A(1, b(c(x))) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule A(1, x) -> C(b(x)) at position [0] we obtained the following new rules [LPAR04]: (A(1, c(b(c(x0)))) -> C(a(0, a(1, x0))),A(1, c(b(c(x0)))) -> C(a(0, a(1, x0)))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(c(b(x)))) -> A(1, b(c(x))) A(1, c(b(c(x0)))) -> C(a(0, a(1, x0))) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule C(c(c(b(x)))) -> A(1, b(c(x))) at position [1] we obtained the following new rules [LPAR04]: (C(c(c(b(b(c(x0)))))) -> A(1, a(0, a(1, x0))),C(c(c(b(b(c(x0)))))) -> A(1, a(0, a(1, x0)))) (C(c(c(b(c(c(b(x0))))))) -> A(1, b(a(1, b(c(x0))))),C(c(c(b(c(c(b(x0))))))) -> A(1, b(a(1, b(c(x0)))))) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A(1, c(b(c(x0)))) -> C(a(0, a(1, x0))) C(c(c(b(b(c(x0)))))) -> A(1, a(0, a(1, x0))) C(c(c(b(c(c(b(x0))))))) -> A(1, b(a(1, b(c(x0))))) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A(1, c(b(c(x0)))) -> C(a(0, a(1, x0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(A(x_1, x_2)) = [[0]] + [[0, 3]] * x_1 + [[1, 0]] * x_2 >>> <<< POL(1) = [[1], [0]] >>> <<< POL(c(x_1)) = [[2], [0]] + [[1, 1], [1, 0]] * x_1 >>> <<< POL(b(x_1)) = [[0], [0]] + [[1, 1], [1, 0]] * x_1 >>> <<< POL(C(x_1)) = [[0]] + [[0, 1]] * x_1 >>> <<< POL(a(x_1, x_2)) = [[0], [0]] + [[2, 1], [0, 1]] * x_1 + [[2, 1], [1, 1]] * x_2 >>> <<< POL(0) = [[1], [2]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a(1, x) -> c(b(x)) c(c(c(b(x)))) -> a(1, b(c(x))) a(0, x) -> c(c(x)) b(c(b(c(x)))) -> a(0, a(1, x)) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(c(b(b(c(x0)))))) -> A(1, a(0, a(1, x0))) C(c(c(b(c(c(b(x0))))))) -> A(1, b(a(1, b(c(x0))))) The TRS R consists of the following rules: c(c(c(b(x)))) -> a(1, b(c(x))) b(c(b(c(x)))) -> a(0, a(1, x)) a(0, x) -> c(c(x)) a(1, x) -> c(b(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (14) TRUE