/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ) Problem 1: Innermost Equivalent Processor: -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> MINUS(s(x),s(y)) QUOT(s(x),s(y)) -> QUOT(minus(s(x),s(y)),s(y)) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) Problem 1: SCC Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> MINUS(s(x),s(y)) QUOT(s(x),s(y)) -> QUOT(minus(s(x),s(y)),s(y)) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->->Cycle: ->->-> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(s(x),s(y)),s(y)) ->->-> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Narrowing Processor: -> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(s(x),s(y)),s(y)) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Narrowed Pairs: ->->Original Pair: QUOT(s(x),s(y)) -> QUOT(minus(s(x),s(y)),s(y)) ->-> Narrowed pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) Problem 1.2: SCC Processor: -> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) ->->-> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) Problem 1.2: Reduction Pairs Processor: -> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) -> Usable rules: minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [minus](X1,X2) = 2.X1 + 1 [0] = 0 [s](X) = 2.X + 2 [QUOT](X1,X2) = 2.X1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Projection: pi(LE) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.