/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 7 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPOrderProof [EQUIVALENT, 80 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) QReductionProof [EQUIVALENT, 0 ms] (33) QDP (34) QDPSizeChangeProof [EQUIVALENT, 0 ms] (35) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) UNION(edge(x, y, i), h) -> UNION(i, h) REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) REACH(x, y, edge(u, v, i), h) -> EQ(x, u) IF_REACH_1(true, x, y, edge(u, v, i), h) -> IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h) IF_REACH_1(true, x, y, edge(u, v, i), h) -> EQ(y, v) IF_REACH_2(false, x, y, edge(u, v, i), h) -> OR(reach(x, y, i, h), reach(v, y, union(i, h), empty)) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty) IF_REACH_2(false, x, y, edge(u, v, i), h) -> UNION(i, h) IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: UNION(edge(x, y, i), h) -> UNION(i, h) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: UNION(edge(x, y, i), h) -> UNION(i, h) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: UNION(edge(x, y, i), h) -> UNION(i, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *UNION(edge(x, y, i), h) -> UNION(i, h) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) IF_REACH_1(true, x, y, edge(u, v, i), h) -> IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty) IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) reach(x, y, empty, h) -> false reach(x, y, edge(u, v, i), h) -> if_reach_1(eq(x, u), x, y, edge(u, v, i), h) if_reach_1(true, x, y, edge(u, v, i), h) -> if_reach_2(eq(y, v), x, y, edge(u, v, i), h) if_reach_2(true, x, y, edge(u, v, i), h) -> true if_reach_2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty)) if_reach_1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) IF_REACH_1(true, x, y, edge(u, v, i), h) -> IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty) IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The TRS R consists of the following rules: union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) or(true, x0) or(false, x0) union(empty, x0) union(edge(x0, x1, x2), x3) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. or(true, x0) or(false, x0) reach(x0, x1, empty, x2) reach(x0, x1, edge(x2, x3, x4), x5) if_reach_1(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(true, x0, x1, edge(x2, x3, x4), x5) if_reach_2(false, x0, x1, edge(x2, x3, x4), x5) if_reach_1(false, x0, x1, edge(x2, x3, x4), x5) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) IF_REACH_1(true, x, y, edge(u, v, i), h) -> IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty) IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The TRS R consists of the following rules: union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) union(empty, x0) union(edge(x0, x1, x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_REACH_1(true, x, y, edge(u, v, i), h) -> IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_REACH_1_5(x_1, ..., x_5) ) = max{0, 2x_3 + x_4 + x_5 - 1} POL( IF_REACH_2_5(x_1, ..., x_5) ) = max{0, 2x_3 + x_4 + x_5 - 2} POL( eq_2(x_1, x_2) ) = 0 POL( 0 ) = 0 POL( true ) = 2 POL( s_1(x_1) ) = 2x_1 POL( false ) = 0 POL( REACH_4(x_1, ..., x_4) ) = max{0, 2x_2 + x_3 + x_4 - 1} POL( union_2(x_1, x_2) ) = x_1 + x_2 POL( empty ) = 0 POL( edge_3(x_1, ..., x_3) ) = x_3 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h) IF_REACH_2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty) IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The TRS R consists of the following rules: union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) union(empty, x0) union(edge(x0, x1, x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) The TRS R consists of the following rules: union(empty, h) -> h union(edge(x, y, i), h) -> edge(x, y, union(i, h)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) union(empty, x0) union(edge(x0, x1, x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) union(empty, x0) union(edge(x0, x1, x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. union(empty, x0) union(edge(x0, x1, x2), x3) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REACH(x, y, edge(u, v, i), h) -> IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h) The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4, 4 >= 5 *IF_REACH_1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h)) The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 ---------------------------------------- (35) YES