/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 4 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 842 ms] (6) QDP (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: comp(s, id) -> s cons(one, shift) -> id cons(comp(one, s), comp(shift, s)) -> s comp(one, cons(s, t)) -> s comp(shift, cons(s, t)) -> t comp(abs(s), t) -> abs(comp(s, cons(one, comp(t, shift)))) comp(cons(s, t), u) -> cons(comp(s, u), comp(t, u)) comp(id, s) -> s comp(comp(s, t), u) -> comp(s, comp(t, u)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: COMP(abs(s), t) -> COMP(s, cons(one, comp(t, shift))) COMP(abs(s), t) -> CONS(one, comp(t, shift)) COMP(abs(s), t) -> COMP(t, shift) COMP(cons(s, t), u) -> CONS(comp(s, u), comp(t, u)) COMP(cons(s, t), u) -> COMP(s, u) COMP(cons(s, t), u) -> COMP(t, u) COMP(comp(s, t), u) -> COMP(s, comp(t, u)) COMP(comp(s, t), u) -> COMP(t, u) The TRS R consists of the following rules: comp(s, id) -> s cons(one, shift) -> id cons(comp(one, s), comp(shift, s)) -> s comp(one, cons(s, t)) -> s comp(shift, cons(s, t)) -> t comp(abs(s), t) -> abs(comp(s, cons(one, comp(t, shift)))) comp(cons(s, t), u) -> cons(comp(s, u), comp(t, u)) comp(id, s) -> s comp(comp(s, t), u) -> comp(s, comp(t, u)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COMP(abs(s), t) -> COMP(t, shift) COMP(abs(s), t) -> COMP(s, cons(one, comp(t, shift))) COMP(cons(s, t), u) -> COMP(s, u) COMP(cons(s, t), u) -> COMP(t, u) COMP(comp(s, t), u) -> COMP(s, comp(t, u)) COMP(comp(s, t), u) -> COMP(t, u) The TRS R consists of the following rules: comp(s, id) -> s cons(one, shift) -> id cons(comp(one, s), comp(shift, s)) -> s comp(one, cons(s, t)) -> s comp(shift, cons(s, t)) -> t comp(abs(s), t) -> abs(comp(s, cons(one, comp(t, shift)))) comp(cons(s, t), u) -> cons(comp(s, u), comp(t, u)) comp(id, s) -> s comp(comp(s, t), u) -> comp(s, comp(t, u)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. COMP(abs(s), t) -> COMP(t, shift) COMP(abs(s), t) -> COMP(s, cons(one, comp(t, shift))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation with max and min functions [POLO,MAXPOLO]: POL(COMP(x_1, x_2)) = x_1 + x_2 POL(abs(x_1)) = 1 + x_1 POL(comp(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = max(x_1, x_2) POL(id) = 0 POL(one) = 0 POL(shift) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: comp(abs(s), t) -> abs(comp(s, cons(one, comp(t, shift)))) comp(cons(s, t), u) -> cons(comp(s, u), comp(t, u)) comp(id, s) -> s comp(comp(s, t), u) -> comp(s, comp(t, u)) cons(one, shift) -> id comp(s, id) -> s comp(one, cons(s, t)) -> s comp(shift, cons(s, t)) -> t cons(comp(one, s), comp(shift, s)) -> s ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: COMP(cons(s, t), u) -> COMP(s, u) COMP(cons(s, t), u) -> COMP(t, u) COMP(comp(s, t), u) -> COMP(s, comp(t, u)) COMP(comp(s, t), u) -> COMP(t, u) The TRS R consists of the following rules: comp(s, id) -> s cons(one, shift) -> id cons(comp(one, s), comp(shift, s)) -> s comp(one, cons(s, t)) -> s comp(shift, cons(s, t)) -> t comp(abs(s), t) -> abs(comp(s, cons(one, comp(t, shift)))) comp(cons(s, t), u) -> cons(comp(s, u), comp(t, u)) comp(id, s) -> s comp(comp(s, t), u) -> comp(s, comp(t, u)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *COMP(cons(s, t), u) -> COMP(s, u) The graph contains the following edges 1 > 1, 2 >= 2 *COMP(cons(s, t), u) -> COMP(t, u) The graph contains the following edges 1 > 1, 2 >= 2 *COMP(comp(s, t), u) -> COMP(s, comp(t, u)) The graph contains the following edges 1 > 1 *COMP(comp(s, t), u) -> COMP(t, u) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (8) YES