/export/starexec/sandbox2/solver/bin/starexec_run_ttt2-1.17+nonreach /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem: f(f(a())) -> c(n__f(n__g(n__f(n__a())))) f(X) -> n__f(X) g(X) -> n__g(X) a() -> n__a() activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a()) -> a() activate(X) -> X Proof: Matrix Interpretation Processor: dim=3 interpretation: [1] [activate](x0) = x0 + [0] [0], [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [c](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [n__g](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [n__f](x0) = [0 0 0]x0 [0 0 0] , [0] [n__a] = [0] [0], [1 0 0] [f](x0) = [0 0 0]x0 [0 0 0] , [1] [a] = [0] [0] orientation: [1] [0] f(f(a())) = [0] >= [0] = c(n__f(n__g(n__f(n__a())))) [0] [0] [1 0 0] [1 0 0] f(X) = [0 0 0]X >= [0 0 0]X = n__f(X) [0 0 0] [0 0 0] [1 0 0] [1 0 0] g(X) = [0 0 0]X >= [0 0 0]X = n__g(X) [0 0 0] [0 0 0] [1] [0] a() = [0] >= [0] = n__a() [0] [0] [1 0 0] [1] [1 0 0] [1] activate(n__f(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = f(activate(X)) [0 0 0] [0] [0 0 0] [0] [1 0 0] [1] [1 0 0] [1] activate(n__g(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = g(activate(X)) [0 0 0] [0] [0 0 0] [0] [1] [1] activate(n__a()) = [0] >= [0] = a() [0] [0] [1] activate(X) = X + [0] >= X = X [0] problem: f(X) -> n__f(X) g(X) -> n__g(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a()) -> a() Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [activate](x0) = [0 0 1]x0 [0 1 0] , [1] [g](x0) = x0 + [1] [1], [0] [n__g](x0) = x0 + [1] [1], [1 1 0] [0] [n__f](x0) = [0 0 1]x0 + [1] [0 1 0] [1], [0] [n__a] = [1] [0], [1 1 0] [1] [f](x0) = [0 0 1]x0 + [1] [0 1 0] [1], [0] [a] = [0] [0] orientation: [1 1 0] [1] [1 1 0] [0] f(X) = [0 0 1]X + [1] >= [0 0 1]X + [1] = n__f(X) [0 1 0] [1] [0 1 0] [1] [1] [0] g(X) = X + [1] >= X + [1] = n__g(X) [1] [1] [1 1 1] [1] [1 1 1] [1] activate(n__f(X)) = [0 1 0]X + [1] >= [0 1 0]X + [1] = f(activate(X)) [0 0 1] [1] [0 0 1] [1] [1 1 0] [1] [1 1 0] [1] activate(n__g(X)) = [0 0 1]X + [1] >= [0 0 1]X + [1] = g(activate(X)) [0 1 0] [1] [0 1 0] [1] [1] [0] activate(n__a()) = [0] >= [0] = a() [1] [0] problem: activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [activate](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [1] [n__g](x0) = [0 0 0]x0 + [0] [0 0 1] [0], [1 0 0] [0] [n__f](x0) = [0 0 0]x0 + [0] [0 0 1] [1], [1 0 0] [f](x0) = [0 0 0]x0 [0 0 0] orientation: [1 0 1] [1] [1 0 1] activate(n__f(X)) = [0 0 0]X + [0] >= [0 0 0]X = f(activate(X)) [0 0 0] [0] [0 0 0] [1 0 1] [1] [1 0 1] activate(n__g(X)) = [0 0 0]X + [0] >= [0 0 0]X = g(activate(X)) [0 0 0] [0] [0 0 0] problem: Qed