/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. !940 : [] --> o !minus : [o * o] --> o !plus : [o * o] --> o !times : [o * o] --> o 0 : [o] --> o 1 : [o] --> o app : [o * o] --> o cons : [o * o] --> o eq : [o * o] --> o false : [] --> o ge : [o * o] --> o if : [o * o * o] --> o ifinter : [o * o * o * o] --> o inter : [o * o] --> o log : [o] --> o log!450 : [o] --> o mem : [o * o] --> o nil : [] --> o not : [o] --> o prod : [o] --> o sum : [o] --> o true : [] --> o 0(!940) => !940 !plus(X, !940) => X !plus(!940, X) => X !plus(0(X), 0(Y)) => 0(!plus(X, Y)) !plus(0(X), 1(Y)) => 1(!plus(X, Y)) !plus(1(X), 0(Y)) => 1(!plus(X, Y)) !plus(1(X), 1(Y)) => 0(!plus(!plus(X, Y), 1(!940))) !plus(!plus(X, Y), Z) => !plus(X, !plus(Y, Z)) !minus(!940, X) => !940 !minus(X, !940) => X !minus(0(X), 0(Y)) => 0(!minus(X, Y)) !minus(0(X), 1(Y)) => 1(!minus(!minus(X, Y), 1(!940))) !minus(1(X), 0(Y)) => 1(!minus(X, Y)) !minus(1(X), 1(Y)) => 0(!minus(X, Y)) not(true) => false not(false) => true if(true, X, Y) => X if(false, X, Y) => Y eq(!940, !940) => true eq(!940, 1(X)) => false eq(1(X), !940) => false eq(!940, 0(X)) => eq(!940, X) eq(0(X), !940) => eq(X, !940) eq(1(X), 1(Y)) => eq(X, Y) eq(0(X), 1(Y)) => false eq(1(X), 0(Y)) => false eq(0(X), 0(Y)) => eq(X, Y) ge(0(X), 0(Y)) => ge(X, Y) ge(0(X), 1(Y)) => not(ge(Y, X)) ge(1(X), 0(Y)) => ge(X, Y) ge(1(X), 1(Y)) => ge(X, Y) ge(X, !940) => true ge(!940, 0(X)) => ge(!940, X) ge(!940, 1(X)) => false log(X) => !minus(log!450(X), 1(!940)) log!450(!940) => !940 log!450(1(X)) => !plus(log!450(X), 1(!940)) log!450(0(X)) => if(ge(X, 1(!940)), !plus(log!450(X), 1(!940)), !940) !times(!940, X) => !940 !times(0(X), Y) => 0(!times(X, Y)) !times(1(X), Y) => !plus(0(!times(X, Y)), Y) !times(!times(X, Y), Z) => !times(X, !times(Y, Z)) !times(X, !plus(Y, Z)) => !plus(!times(X, Y), !times(X, Z)) app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(nil) => 0(!940) sum(cons(X, Y)) => !plus(X, sum(Y)) sum(app(X, Y)) => !plus(sum(X), sum(Y)) prod(nil) => 1(!940) prod(cons(X, Y)) => !times(X, prod(Y)) prod(app(X, Y)) => !times(prod(X), prod(Y)) mem(X, nil) => false mem(X, cons(Y, Z)) => if(eq(X, Y), true, mem(X, Z)) inter(X, nil) => nil inter(nil, X) => nil inter(app(X, Y), Z) => app(inter(X, Z), inter(Y, Z)) inter(X, app(Y, Z)) => app(inter(X, Y), inter(X, Z)) inter(cons(X, Y), Z) => ifinter(mem(X, Z), X, Y, Z) inter(X, cons(Y, Z)) => ifinter(mem(Y, X), Y, Z, X) ifinter(true, X, Y, Z) => cons(X, inter(Y, Z)) ifinter(false, X, Y, Z) => inter(Y, Z) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] !plus#(0(X), 0(Y)) =#> 0#(!plus(X, Y)) 1] !plus#(0(X), 0(Y)) =#> !plus#(X, Y) 2] !plus#(0(X), 1(Y)) =#> !plus#(X, Y) 3] !plus#(1(X), 0(Y)) =#> !plus#(X, Y) 4] !plus#(1(X), 1(Y)) =#> 0#(!plus(!plus(X, Y), 1(!940))) 5] !plus#(1(X), 1(Y)) =#> !plus#(!plus(X, Y), 1(!940)) 6] !plus#(1(X), 1(Y)) =#> !plus#(X, Y) 7] !plus#(!plus(X, Y), Z) =#> !plus#(X, !plus(Y, Z)) 8] !plus#(!plus(X, Y), Z) =#> !plus#(Y, Z) 9] !minus#(0(X), 0(Y)) =#> 0#(!minus(X, Y)) 10] !minus#(0(X), 0(Y)) =#> !minus#(X, Y) 11] !minus#(0(X), 1(Y)) =#> !minus#(!minus(X, Y), 1(!940)) 12] !minus#(0(X), 1(Y)) =#> !minus#(X, Y) 13] !minus#(1(X), 0(Y)) =#> !minus#(X, Y) 14] !minus#(1(X), 1(Y)) =#> 0#(!minus(X, Y)) 15] !minus#(1(X), 1(Y)) =#> !minus#(X, Y) 16] eq#(!940, 0(X)) =#> eq#(!940, X) 17] eq#(0(X), !940) =#> eq#(X, !940) 18] eq#(1(X), 1(Y)) =#> eq#(X, Y) 19] eq#(0(X), 0(Y)) =#> eq#(X, Y) 20] ge#(0(X), 0(Y)) =#> ge#(X, Y) 21] ge#(0(X), 1(Y)) =#> not#(ge(Y, X)) 22] ge#(0(X), 1(Y)) =#> ge#(Y, X) 23] ge#(1(X), 0(Y)) =#> ge#(X, Y) 24] ge#(1(X), 1(Y)) =#> ge#(X, Y) 25] ge#(!940, 0(X)) =#> ge#(!940, X) 26] log#(X) =#> !minus#(log!450(X), 1(!940)) 27] log#(X) =#> log!450#(X) 28] log!450#(1(X)) =#> !plus#(log!450(X), 1(!940)) 29] log!450#(1(X)) =#> log!450#(X) 30] log!450#(0(X)) =#> if#(ge(X, 1(!940)), !plus(log!450(X), 1(!940)), !940) 31] log!450#(0(X)) =#> ge#(X, 1(!940)) 32] log!450#(0(X)) =#> !plus#(log!450(X), 1(!940)) 33] log!450#(0(X)) =#> log!450#(X) 34] !times#(0(X), Y) =#> 0#(!times(X, Y)) 35] !times#(0(X), Y) =#> !times#(X, Y) 36] !times#(1(X), Y) =#> !plus#(0(!times(X, Y)), Y) 37] !times#(1(X), Y) =#> 0#(!times(X, Y)) 38] !times#(1(X), Y) =#> !times#(X, Y) 39] !times#(!times(X, Y), Z) =#> !times#(X, !times(Y, Z)) 40] !times#(!times(X, Y), Z) =#> !times#(Y, Z) 41] !times#(X, !plus(Y, Z)) =#> !plus#(!times(X, Y), !times(X, Z)) 42] !times#(X, !plus(Y, Z)) =#> !times#(X, Y) 43] !times#(X, !plus(Y, Z)) =#> !times#(X, Z) 44] app#(cons(X, Y), Z) =#> app#(Y, Z) 45] sum#(nil) =#> 0#(!940) 46] sum#(cons(X, Y)) =#> !plus#(X, sum(Y)) 47] sum#(cons(X, Y)) =#> sum#(Y) 48] sum#(app(X, Y)) =#> !plus#(sum(X), sum(Y)) 49] sum#(app(X, Y)) =#> sum#(X) 50] sum#(app(X, Y)) =#> sum#(Y) 51] prod#(cons(X, Y)) =#> !times#(X, prod(Y)) 52] prod#(cons(X, Y)) =#> prod#(Y) 53] prod#(app(X, Y)) =#> !times#(prod(X), prod(Y)) 54] prod#(app(X, Y)) =#> prod#(X) 55] prod#(app(X, Y)) =#> prod#(Y) 56] mem#(X, cons(Y, Z)) =#> if#(eq(X, Y), true, mem(X, Z)) 57] mem#(X, cons(Y, Z)) =#> eq#(X, Y) 58] mem#(X, cons(Y, Z)) =#> mem#(X, Z) 59] inter#(app(X, Y), Z) =#> app#(inter(X, Z), inter(Y, Z)) 60] inter#(app(X, Y), Z) =#> inter#(X, Z) 61] inter#(app(X, Y), Z) =#> inter#(Y, Z) 62] inter#(X, app(Y, Z)) =#> app#(inter(X, Y), inter(X, Z)) 63] inter#(X, app(Y, Z)) =#> inter#(X, Y) 64] inter#(X, app(Y, Z)) =#> inter#(X, Z) 65] inter#(cons(X, Y), Z) =#> ifinter#(mem(X, Z), X, Y, Z) 66] inter#(cons(X, Y), Z) =#> mem#(X, Z) 67] inter#(X, cons(Y, Z)) =#> ifinter#(mem(Y, X), Y, Z, X) 68] inter#(X, cons(Y, Z)) =#> mem#(Y, X) 69] ifinter#(true, X, Y, Z) =#> inter#(Y, Z) 70] ifinter#(false, X, Y, Z) =#> inter#(Y, Z) Rules R_0: 0(!940) => !940 !plus(X, !940) => X !plus(!940, X) => X !plus(0(X), 0(Y)) => 0(!plus(X, Y)) !plus(0(X), 1(Y)) => 1(!plus(X, Y)) !plus(1(X), 0(Y)) => 1(!plus(X, Y)) !plus(1(X), 1(Y)) => 0(!plus(!plus(X, Y), 1(!940))) !plus(!plus(X, Y), Z) => !plus(X, !plus(Y, Z)) !minus(!940, X) => !940 !minus(X, !940) => X !minus(0(X), 0(Y)) => 0(!minus(X, Y)) !minus(0(X), 1(Y)) => 1(!minus(!minus(X, Y), 1(!940))) !minus(1(X), 0(Y)) => 1(!minus(X, Y)) !minus(1(X), 1(Y)) => 0(!minus(X, Y)) not(true) => false not(false) => true if(true, X, Y) => X if(false, X, Y) => Y eq(!940, !940) => true eq(!940, 1(X)) => false eq(1(X), !940) => false eq(!940, 0(X)) => eq(!940, X) eq(0(X), !940) => eq(X, !940) eq(1(X), 1(Y)) => eq(X, Y) eq(0(X), 1(Y)) => false eq(1(X), 0(Y)) => false eq(0(X), 0(Y)) => eq(X, Y) ge(0(X), 0(Y)) => ge(X, Y) ge(0(X), 1(Y)) => not(ge(Y, X)) ge(1(X), 0(Y)) => ge(X, Y) ge(1(X), 1(Y)) => ge(X, Y) ge(X, !940) => true ge(!940, 0(X)) => ge(!940, X) ge(!940, 1(X)) => false log(X) => !minus(log!450(X), 1(!940)) log!450(!940) => !940 log!450(1(X)) => !plus(log!450(X), 1(!940)) log!450(0(X)) => if(ge(X, 1(!940)), !plus(log!450(X), 1(!940)), !940) !times(!940, X) => !940 !times(0(X), Y) => 0(!times(X, Y)) !times(1(X), Y) => !plus(0(!times(X, Y)), Y) !times(!times(X, Y), Z) => !times(X, !times(Y, Z)) !times(X, !plus(Y, Z)) => !plus(!times(X, Y), !times(X, Z)) app(nil, X) => X app(cons(X, Y), Z) => cons(X, app(Y, Z)) sum(nil) => 0(!940) sum(cons(X, Y)) => !plus(X, sum(Y)) sum(app(X, Y)) => !plus(sum(X), sum(Y)) prod(nil) => 1(!940) prod(cons(X, Y)) => !times(X, prod(Y)) prod(app(X, Y)) => !times(prod(X), prod(Y)) mem(X, nil) => false mem(X, cons(Y, Z)) => if(eq(X, Y), true, mem(X, Z)) inter(X, nil) => nil inter(nil, X) => nil inter(app(X, Y), Z) => app(inter(X, Z), inter(Y, Z)) inter(X, app(Y, Z)) => app(inter(X, Y), inter(X, Z)) inter(cons(X, Y), Z) => ifinter(mem(X, Z), X, Y, Z) inter(X, cons(Y, Z)) => ifinter(mem(Y, X), Y, Z, X) ifinter(true, X, Y, Z) => cons(X, inter(Y, Z)) ifinter(false, X, Y, Z) => inter(Y, Z) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 2 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 3 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 4 : * 5 : 2, 4, 5, 6, 7, 8 * 6 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 7 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 8 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 9 : * 10 : 9, 10, 11, 12, 13, 14, 15 * 11 : 11, 12, 14, 15 * 12 : 9, 10, 11, 12, 13, 14, 15 * 13 : 9, 10, 11, 12, 13, 14, 15 * 14 : * 15 : 9, 10, 11, 12, 13, 14, 15 * 16 : 16 * 17 : 17 * 18 : 16, 17, 18, 19 * 19 : 16, 17, 18, 19 * 20 : 20, 21, 22, 23, 24, 25 * 21 : * 22 : 20, 21, 22, 23, 24, 25 * 23 : 20, 21, 22, 23, 24, 25 * 24 : 20, 21, 22, 23, 24, 25 * 25 : 25 * 26 : 11, 12, 14, 15 * 27 : 28, 29, 30, 31, 32, 33 * 28 : 2, 4, 5, 6, 7, 8 * 29 : 28, 29, 30, 31, 32, 33 * 30 : * 31 : 21, 22, 24 * 32 : 2, 4, 5, 6, 7, 8 * 33 : 28, 29, 30, 31, 32, 33 * 34 : * 35 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 36 : 0, 1, 2 * 37 : * 38 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 39 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 40 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 41 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 42 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 43 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 44 : 44 * 45 : * 46 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 47 : 45, 46, 47, 48, 49, 50 * 48 : 0, 1, 2, 3, 4, 5, 6, 7, 8 * 49 : 45, 46, 47, 48, 49, 50 * 50 : 45, 46, 47, 48, 49, 50 * 51 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 52 : 51, 52, 53, 54, 55 * 53 : 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 * 54 : 51, 52, 53, 54, 55 * 55 : 51, 52, 53, 54, 55 * 56 : * 57 : 16, 17, 18, 19 * 58 : 56, 57, 58 * 59 : 44 * 60 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 * 61 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 * 62 : 44 * 63 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 * 64 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 * 65 : 69, 70 * 66 : 56, 57, 58 * 67 : 69, 70 * 68 : 56, 57, 58 * 69 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 * 70 : 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 This graph has the following strongly connected components: P_1: !plus#(0(X), 0(Y)) =#> !plus#(X, Y) !plus#(0(X), 1(Y)) =#> !plus#(X, Y) !plus#(1(X), 0(Y)) =#> !plus#(X, Y) !plus#(1(X), 1(Y)) =#> !plus#(!plus(X, Y), 1(!940)) !plus#(1(X), 1(Y)) =#> !plus#(X, Y) !plus#(!plus(X, Y), Z) =#> !plus#(X, !plus(Y, Z)) !plus#(!plus(X, Y), Z) =#> !plus#(Y, Z) P_2: !minus#(0(X), 0(Y)) =#> !minus#(X, Y) !minus#(0(X), 1(Y)) =#> !minus#(!minus(X, Y), 1(!940)) !minus#(0(X), 1(Y)) =#> !minus#(X, Y) !minus#(1(X), 0(Y)) =#> !minus#(X, Y) !minus#(1(X), 1(Y)) =#> !minus#(X, Y) P_3: eq#(!940, 0(X)) =#> eq#(!940, X) P_4: eq#(0(X), !940) =#> eq#(X, !940) P_5: eq#(1(X), 1(Y)) =#> eq#(X, Y) eq#(0(X), 0(Y)) =#> eq#(X, Y) P_6: ge#(0(X), 0(Y)) =#> ge#(X, Y) ge#(0(X), 1(Y)) =#> ge#(Y, X) ge#(1(X), 0(Y)) =#> ge#(X, Y) ge#(1(X), 1(Y)) =#> ge#(X, Y) P_7: ge#(!940, 0(X)) =#> ge#(!940, X) P_8: log!450#(1(X)) =#> log!450#(X) log!450#(0(X)) =#> log!450#(X) P_9: !times#(0(X), Y) =#> !times#(X, Y) !times#(1(X), Y) =#> !times#(X, Y) !times#(!times(X, Y), Z) =#> !times#(X, !times(Y, Z)) !times#(!times(X, Y), Z) =#> !times#(Y, Z) !times#(X, !plus(Y, Z)) =#> !times#(X, Y) !times#(X, !plus(Y, Z)) =#> !times#(X, Z) P_10: app#(cons(X, Y), Z) =#> app#(Y, Z) P_11: sum#(cons(X, Y)) =#> sum#(Y) sum#(app(X, Y)) =#> sum#(X) sum#(app(X, Y)) =#> sum#(Y) P_12: prod#(cons(X, Y)) =#> prod#(Y) prod#(app(X, Y)) =#> prod#(X) prod#(app(X, Y)) =#> prod#(Y) P_13: mem#(X, cons(Y, Z)) =#> mem#(X, Z) P_14: inter#(app(X, Y), Z) =#> inter#(X, Z) inter#(app(X, Y), Z) =#> inter#(Y, Z) inter#(X, app(Y, Z)) =#> inter#(X, Y) inter#(X, app(Y, Z)) =#> inter#(X, Z) inter#(cons(X, Y), Z) =#> ifinter#(mem(X, Z), X, Y, Z) inter#(X, cons(Y, Z)) =#> ifinter#(mem(Y, X), Y, Z, X) ifinter#(true, X, Y, Z) =#> inter#(Y, Z) ifinter#(false, X, Y, Z) =#> inter#(Y, Z) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f), (P_4, R_0, m, f), (P_5, R_0, m, f), (P_6, R_0, m, f), (P_7, R_0, m, f), (P_8, R_0, m, f), (P_9, R_0, m, f), (P_10, R_0, m, f), (P_11, R_0, m, f), (P_12, R_0, m, f), (P_13, R_0, m, f) and (P_14, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative), (P_10, R_0, minimal, formative), (P_11, R_0, minimal, formative), (P_12, R_0, minimal, formative), (P_13, R_0, minimal, formative) and (P_14, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_14, R_0, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_14, R_0) are: if(true, X, Y) => X if(false, X, Y) => Y eq(!940, !940) => true eq(!940, 1(X)) => false eq(1(X), !940) => false eq(!940, 0(X)) => eq(!940, X) eq(0(X), !940) => eq(X, !940) eq(1(X), 1(Y)) => eq(X, Y) eq(0(X), 1(Y)) => false eq(1(X), 0(Y)) => false eq(0(X), 0(Y)) => eq(X, Y) mem(X, nil) => false mem(X, cons(Y, Z)) => if(eq(X, Y), true, mem(X, Z)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: inter#(app(X, Y), Z) >? inter#(X, Z) inter#(app(X, Y), Z) >? inter#(Y, Z) inter#(X, app(Y, Z)) >? inter#(X, Y) inter#(X, app(Y, Z)) >? inter#(X, Z) inter#(cons(X, Y), Z) >? ifinter#(mem(X, Z), X, Y, Z) inter#(X, cons(Y, Z)) >? ifinter#(mem(Y, X), Y, Z, X) ifinter#(true, X, Y, Z) >? inter#(Y, Z) ifinter#(false, X, Y, Z) >? inter#(Y, Z) if(true, X, Y) >= X if(false, X, Y) >= Y eq(!940, !940) >= true eq(!940, 1(X)) >= false eq(1(X), !940) >= false eq(!940, 0(X)) >= eq(!940, X) eq(0(X), !940) >= eq(X, !940) eq(1(X), 1(Y)) >= eq(X, Y) eq(0(X), 1(Y)) >= false eq(1(X), 0(Y)) >= false eq(0(X), 0(Y)) >= eq(X, Y) mem(X, nil) >= false mem(X, cons(Y, Z)) >= if(eq(X, Y), true, mem(X, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: if(x_1,x_2,x_3) = if(x_2x_3) This leaves the following ordering requirements: inter#(app(X, Y), Z) > inter#(X, Z) inter#(app(X, Y), Z) >= inter#(Y, Z) inter#(X, app(Y, Z)) >= inter#(X, Y) inter#(X, app(Y, Z)) >= inter#(X, Z) inter#(cons(X, Y), Z) >= ifinter#(mem(X, Z), X, Y, Z) inter#(X, cons(Y, Z)) >= ifinter#(mem(Y, X), Y, Z, X) ifinter#(true, X, Y, Z) >= inter#(Y, Z) ifinter#(false, X, Y, Z) >= inter#(Y, Z) if(true, X, Y) >= X if(false, X, Y) >= Y mem(X, nil) >= false mem(X, cons(Y, Z)) >= if(eq(X, Y), true, mem(X, Z)) The following interpretation satisfies the requirements: !940 = 3 0 = \y0.3 1 = \y0.3 app = \y0y1.3 + y0 + y1 cons = \y0y1.3 + y0 + 2y1 eq = \y0y1.3 false = 0 if = \y0y1y2.y2 + 2y1 ifinter# = \y0y1y2y3.y3 + 2y2 inter# = \y0y1.y1 + 2y0 mem = \y0y1.0 nil = 3 true = 0 Using this interpretation, the requirements translate to: [[inter#(app(_x0, _x1), _x2)]] = 6 + x2 + 2x0 + 2x1 > x2 + 2x0 = [[inter#(_x0, _x2)]] [[inter#(app(_x0, _x1), _x2)]] = 6 + x2 + 2x0 + 2x1 > x2 + 2x1 = [[inter#(_x1, _x2)]] [[inter#(_x0, app(_x1, _x2))]] = 3 + x1 + x2 + 2x0 > x1 + 2x0 = [[inter#(_x0, _x1)]] [[inter#(_x0, app(_x1, _x2))]] = 3 + x1 + x2 + 2x0 > x2 + 2x0 = [[inter#(_x0, _x2)]] [[inter#(cons(_x0, _x1), _x2)]] = 6 + x2 + 2x0 + 4x1 > x2 + 2x1 = [[ifinter#(mem(_x0, _x2), _x0, _x1, _x2)]] [[inter#(_x0, cons(_x1, _x2))]] = 3 + x1 + 2x0 + 2x2 > x0 + 2x2 = [[ifinter#(mem(_x1, _x0), _x1, _x2, _x0)]] [[ifinter#(true, _x0, _x1, _x2)]] = x2 + 2x1 >= x2 + 2x1 = [[inter#(_x1, _x2)]] [[ifinter#(false, _x0, _x1, _x2)]] = x2 + 2x1 >= x2 + 2x1 = [[inter#(_x1, _x2)]] [[if(true, _x0, _x1)]] = x1 + 2x0 >= x0 = [[_x0]] [[if(false, _x0, _x1)]] = x1 + 2x0 >= x1 = [[_x1]] [[mem(_x0, nil)]] = 0 >= 0 = [[false]] [[mem(_x0, cons(_x1, _x2))]] = 0 >= 0 = [[if(eq(_x0, _x1), true, mem(_x0, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_14, R_0, minimal, formative) by (P_15, R_0, minimal, formative), where P_15 consists of: ifinter#(true, X, Y, Z) =#> inter#(Y, Z) ifinter#(false, X, Y, Z) =#> inter#(Y, Z) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative), (P_10, R_0, minimal, formative), (P_11, R_0, minimal, formative), (P_12, R_0, minimal, formative), (P_13, R_0, minimal, formative) and (P_15, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_15, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative), (P_10, R_0, minimal, formative), (P_11, R_0, minimal, formative), (P_12, R_0, minimal, formative) and (P_13, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_13, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(mem#) = 2 Thus, we can orient the dependency pairs as follows: nu(mem#(X, cons(Y, Z))) = cons(Y, Z) |> Z = nu(mem#(X, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_13, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative), (P_10, R_0, minimal, formative), (P_11, R_0, minimal, formative) and (P_12, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_12, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(prod#) = 1 Thus, we can orient the dependency pairs as follows: nu(prod#(cons(X, Y))) = cons(X, Y) |> Y = nu(prod#(Y)) nu(prod#(app(X, Y))) = app(X, Y) |> X = nu(prod#(X)) nu(prod#(app(X, Y))) = app(X, Y) |> Y = nu(prod#(Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_12, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative), (P_10, R_0, minimal, formative) and (P_11, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_11, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(sum#) = 1 Thus, we can orient the dependency pairs as follows: nu(sum#(cons(X, Y))) = cons(X, Y) |> Y = nu(sum#(Y)) nu(sum#(app(X, Y))) = app(X, Y) |> X = nu(sum#(X)) nu(sum#(app(X, Y))) = app(X, Y) |> Y = nu(sum#(Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_11, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative), (P_9, R_0, minimal, formative) and (P_10, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_10, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(app#) = 1 Thus, we can orient the dependency pairs as follows: nu(app#(cons(X, Y), Z)) = cons(X, Y) |> Y = nu(app#(Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_10, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative) and (P_9, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_9, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(!times#) = 1 Thus, we can orient the dependency pairs as follows: nu(!times#(0(X), Y)) = 0(X) |> X = nu(!times#(X, Y)) nu(!times#(1(X), Y)) = 1(X) |> X = nu(!times#(X, Y)) nu(!times#(!times(X, Y), Z)) = !times(X, Y) |> X = nu(!times#(X, !times(Y, Z))) nu(!times#(!times(X, Y), Z)) = !times(X, Y) |> Y = nu(!times#(Y, Z)) nu(!times#(X, !plus(Y, Z))) = X = X = nu(!times#(X, Y)) nu(!times#(X, !plus(Y, Z))) = X = X = nu(!times#(X, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_9, R_0, minimal, f) by (P_16, R_0, minimal, f), where P_16 contains: !times#(X, !plus(Y, Z)) =#> !times#(X, Y) !times#(X, !plus(Y, Z)) =#> !times#(X, Z) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative), (P_8, R_0, minimal, formative) and (P_16, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_16, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(!times#) = 2 Thus, we can orient the dependency pairs as follows: nu(!times#(X, !plus(Y, Z))) = !plus(Y, Z) |> Y = nu(!times#(X, Y)) nu(!times#(X, !plus(Y, Z))) = !plus(Y, Z) |> Z = nu(!times#(X, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_16, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative), (P_7, R_0, minimal, formative) and (P_8, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_8, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(log!450#) = 1 Thus, we can orient the dependency pairs as follows: nu(log!450#(1(X))) = 1(X) |> X = nu(log!450#(X)) nu(log!450#(0(X))) = 0(X) |> X = nu(log!450#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_8, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative), (P_6, R_0, minimal, formative) and (P_7, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_7, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(ge#) = 2 Thus, we can orient the dependency pairs as follows: nu(ge#(!940, 0(X))) = 0(X) |> X = nu(ge#(!940, X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_7, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_6, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_0, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. (P_6, R_0) has no usable rules. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: ge#(0(X), 0(Y)) >? ge#(X, Y) ge#(0(X), 1(Y)) >? ge#(Y, X) ge#(1(X), 0(Y)) >? ge#(X, Y) ge#(1(X), 1(Y)) >? ge#(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = \y0.3 + y0 1 = \y0.3 + y0 ge# = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[ge#(0(_x0), 0(_x1))]] = 6 + x0 + x1 > x0 + x1 = [[ge#(_x0, _x1)]] [[ge#(0(_x0), 1(_x1))]] = 6 + x0 + x1 > x0 + x1 = [[ge#(_x1, _x0)]] [[ge#(1(_x0), 0(_x1))]] = 6 + x0 + x1 > x0 + x1 = [[ge#(_x0, _x1)]] [[ge#(1(_x0), 1(_x1))]] = 6 + x0 + x1 > x0 + x1 = [[ge#(_x0, _x1)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_6, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(eq#) = 1 Thus, we can orient the dependency pairs as follows: nu(eq#(1(X), 1(Y))) = 1(X) |> X = nu(eq#(X, Y)) nu(eq#(0(X), 0(Y))) = 0(X) |> X = nu(eq#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(eq#) = 1 Thus, we can orient the dependency pairs as follows: nu(eq#(0(X), !940)) = 0(X) |> X = nu(eq#(X, !940)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(eq#) = 2 Thus, we can orient the dependency pairs as follows: nu(eq#(!940, 0(X))) = 0(X) |> X = nu(eq#(!940, X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_2, R_0) are: 0(!940) => !940 !minus(!940, X) => !940 !minus(X, !940) => X !minus(0(X), 0(Y)) => 0(!minus(X, Y)) !minus(0(X), 1(Y)) => 1(!minus(!minus(X, Y), 1(!940))) !minus(1(X), 0(Y)) => 1(!minus(X, Y)) !minus(1(X), 1(Y)) => 0(!minus(X, Y)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: !minus#(0(X), 0(Y)) >? !minus#(X, Y) !minus#(0(X), 1(Y)) >? !minus#(!minus(X, Y), 1(!940)) !minus#(0(X), 1(Y)) >? !minus#(X, Y) !minus#(1(X), 0(Y)) >? !minus#(X, Y) !minus#(1(X), 1(Y)) >? !minus#(X, Y) 0(!940) >= !940 !minus(!940, X) >= !940 !minus(X, !940) >= X !minus(0(X), 0(Y)) >= 0(!minus(X, Y)) !minus(0(X), 1(Y)) >= 1(!minus(!minus(X, Y), 1(!940))) !minus(1(X), 0(Y)) >= 1(!minus(X, Y)) !minus(1(X), 1(Y)) >= 0(!minus(X, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !940 = 0 !minus = \y0y1.y0 !minus# = \y0y1.y0 0 = \y0.1 + 2y0 1 = \y0.1 + 2y0 Using this interpretation, the requirements translate to: [[!minus#(0(_x0), 0(_x1))]] = 1 + 2x0 > x0 = [[!minus#(_x0, _x1)]] [[!minus#(0(_x0), 1(_x1))]] = 1 + 2x0 > x0 = [[!minus#(!minus(_x0, _x1), 1(!940))]] [[!minus#(0(_x0), 1(_x1))]] = 1 + 2x0 > x0 = [[!minus#(_x0, _x1)]] [[!minus#(1(_x0), 0(_x1))]] = 1 + 2x0 > x0 = [[!minus#(_x0, _x1)]] [[!minus#(1(_x0), 1(_x1))]] = 1 + 2x0 > x0 = [[!minus#(_x0, _x1)]] [[0(!940)]] = 1 >= 0 = [[!940]] [[!minus(!940, _x0)]] = 0 >= 0 = [[!940]] [[!minus(_x0, !940)]] = x0 >= x0 = [[_x0]] [[!minus(0(_x0), 0(_x1))]] = 1 + 2x0 >= 1 + 2x0 = [[0(!minus(_x0, _x1))]] [[!minus(0(_x0), 1(_x1))]] = 1 + 2x0 >= 1 + 2x0 = [[1(!minus(!minus(_x0, _x1), 1(!940)))]] [[!minus(1(_x0), 0(_x1))]] = 1 + 2x0 >= 1 + 2x0 = [[1(!minus(_x0, _x1))]] [[!minus(1(_x0), 1(_x1))]] = 1 + 2x0 >= 1 + 2x0 = [[0(!minus(_x0, _x1))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_2, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_1, R_0) are: 0(!940) => !940 !plus(X, !940) => X !plus(!940, X) => X !plus(0(X), 0(Y)) => 0(!plus(X, Y)) !plus(0(X), 1(Y)) => 1(!plus(X, Y)) !plus(1(X), 0(Y)) => 1(!plus(X, Y)) !plus(1(X), 1(Y)) => 0(!plus(!plus(X, Y), 1(!940))) !plus(!plus(X, Y), Z) => !plus(X, !plus(Y, Z)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: !plus#(0(X), 0(Y)) >? !plus#(X, Y) !plus#(0(X), 1(Y)) >? !plus#(X, Y) !plus#(1(X), 0(Y)) >? !plus#(X, Y) !plus#(1(X), 1(Y)) >? !plus#(!plus(X, Y), 1(!940)) !plus#(1(X), 1(Y)) >? !plus#(X, Y) !plus#(!plus(X, Y), Z) >? !plus#(X, !plus(Y, Z)) !plus#(!plus(X, Y), Z) >? !plus#(Y, Z) 0(!940) >= !940 !plus(X, !940) >= X !plus(!940, X) >= X !plus(0(X), 0(Y)) >= 0(!plus(X, Y)) !plus(0(X), 1(Y)) >= 1(!plus(X, Y)) !plus(1(X), 0(Y)) >= 1(!plus(X, Y)) !plus(1(X), 1(Y)) >= 0(!plus(!plus(X, Y), 1(!940))) !plus(!plus(X, Y), Z) >= !plus(X, !plus(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: !940 = 0 !plus = \y0y1.y0 + y1 !plus# = \y0y1.2y0 + 2y1 0 = \y0.2y0 1 = \y0.2 + 2y0 Using this interpretation, the requirements translate to: [[!plus#(0(_x0), 0(_x1))]] = 4x0 + 4x1 >= 2x0 + 2x1 = [[!plus#(_x0, _x1)]] [[!plus#(0(_x0), 1(_x1))]] = 4 + 4x0 + 4x1 > 2x0 + 2x1 = [[!plus#(_x0, _x1)]] [[!plus#(1(_x0), 0(_x1))]] = 4 + 4x0 + 4x1 > 2x0 + 2x1 = [[!plus#(_x0, _x1)]] [[!plus#(1(_x0), 1(_x1))]] = 8 + 4x0 + 4x1 > 4 + 2x0 + 2x1 = [[!plus#(!plus(_x0, _x1), 1(!940))]] [[!plus#(1(_x0), 1(_x1))]] = 8 + 4x0 + 4x1 > 2x0 + 2x1 = [[!plus#(_x0, _x1)]] [[!plus#(!plus(_x0, _x1), _x2)]] = 2x0 + 2x1 + 2x2 >= 2x0 + 2x1 + 2x2 = [[!plus#(_x0, !plus(_x1, _x2))]] [[!plus#(!plus(_x0, _x1), _x2)]] = 2x0 + 2x1 + 2x2 >= 2x1 + 2x2 = [[!plus#(_x1, _x2)]] [[0(!940)]] = 0 >= 0 = [[!940]] [[!plus(_x0, !940)]] = x0 >= x0 = [[_x0]] [[!plus(!940, _x0)]] = x0 >= x0 = [[_x0]] [[!plus(0(_x0), 0(_x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[0(!plus(_x0, _x1))]] [[!plus(0(_x0), 1(_x1))]] = 2 + 2x0 + 2x1 >= 2 + 2x0 + 2x1 = [[1(!plus(_x0, _x1))]] [[!plus(1(_x0), 0(_x1))]] = 2 + 2x0 + 2x1 >= 2 + 2x0 + 2x1 = [[1(!plus(_x0, _x1))]] [[!plus(1(_x0), 1(_x1))]] = 4 + 2x0 + 2x1 >= 4 + 2x0 + 2x1 = [[0(!plus(!plus(_x0, _x1), 1(!940)))]] [[!plus(!plus(_x0, _x1), _x2)]] = x0 + x1 + x2 >= x0 + x1 + x2 = [[!plus(_x0, !plus(_x1, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_17, R_0, minimal, formative), where P_17 consists of: !plus#(0(X), 0(Y)) =#> !plus#(X, Y) !plus#(!plus(X, Y), Z) =#> !plus#(X, !plus(Y, Z)) !plus#(!plus(X, Y), Z) =#> !plus#(Y, Z) Thus, the original system is terminating if (P_17, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_17, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(!plus#) = 1 Thus, we can orient the dependency pairs as follows: nu(!plus#(0(X), 0(Y))) = 0(X) |> X = nu(!plus#(X, Y)) nu(!plus#(!plus(X, Y), Z)) = !plus(X, Y) |> X = nu(!plus#(X, !plus(Y, Z))) nu(!plus#(!plus(X, Y), Z)) = !plus(X, Y) |> Y = nu(!plus#(Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_17, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.