/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPOrderProof [EQUIVALENT, 91 ms] (17) QDP (18) QDPOrderProof [EQUIVALENT, 18 ms] (19) QDP (20) PisEmptyProof [EQUIVALENT, 0 ms] (21) YES (22) QDP (23) QDPOrderProof [EQUIVALENT, 0 ms] (24) QDP (25) PisEmptyProof [EQUIVALENT, 0 ms] (26) YES (27) QDP (28) QDPOrderProof [EQUIVALENT, 0 ms] (29) QDP (30) PisEmptyProof [EQUIVALENT, 0 ms] (31) YES (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) QDPOrderProof [EQUIVALENT, 16 ms] (37) QDP (38) PisEmptyProof [EQUIVALENT, 0 ms] (39) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) QUOT(s(x), s(y)) -> MINUS(x, y) PLUS(s(x), y) -> PLUS(x, y) MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) MINUS(minus(x, y), z) -> PLUS(y, z) APP(cons(x, l), k) -> APP(l, k) SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l)) SUM(cons(x, cons(y, l))) -> PLUS(x, y) SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k))))) SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k)))) SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k))) PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), s(y)) -> IF(gt(x, y), x, y) PLUS(s(x), s(y)) -> GT(x, y) PLUS(s(x), s(y)) -> IF(not(gt(x, y)), id(x), id(y)) PLUS(s(x), s(y)) -> NOT(gt(x, y)) PLUS(s(x), s(y)) -> ID(x) PLUS(s(x), s(y)) -> ID(y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(s(x), x) -> IF(gt(x, x), id(x), id(x)) PLUS(s(x), x) -> GT(x, x) PLUS(s(x), x) -> ID(x) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) PLUS(id(x), s(y)) -> IF(gt(s(y), y), y, s(y)) PLUS(id(x), s(y)) -> GT(s(y), y) NOT(x) -> IF(x, false, true) GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 17 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(x, l), k) -> APP(l, k) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(x, l), k) -> APP(l, k) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(cons(x, l), k) -> APP(l, k) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) PLUS(s(x), y) -> PLUS(x, y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), s(y)) -> PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(PLUS(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(s(x_1)) = [[5A]] + [[5A]] * x_1 >>> <<< POL(if(x_1, x_2, x_3)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 + [[0A]] * x_3 >>> <<< POL(gt(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[-I]] * x_2 >>> <<< POL(not(x_1)) = [[4A]] + [[3A]] * x_1 >>> <<< POL(id(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(zero) = [[1A]] >>> <<< POL(true) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) id(x) -> x ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. PLUS(s(x), y) -> PLUS(x, y) PLUS(s(x), x) -> PLUS(if(gt(x, x), id(x), id(x)), s(x)) PLUS(id(x), s(y)) -> PLUS(x, if(gt(s(y), y), y, s(y))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. PLUS(x1, x2) = PLUS(x1, x2) s(x1) = s(x1) if(x1, x2, x3) = if(x1, x2, x3) gt(x1, x2) = gt id(x1) = id(x1) zero = zero true = true false = false Recursive path order with status [RPO]. Quasi-Precedence: PLUS_2 > [s_1, gt] > id_1 > if_3 PLUS_2 > [s_1, gt] > [zero, true, false] Status: PLUS_2: [1,2] s_1: multiset status if_3: multiset status gt: multiset status id_1: multiset status zero: multiset status true: multiset status false: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y ---------------------------------------- (19) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. SUM(x1) = x1 cons(x1, x2) = cons(x2) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (24) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (26) YES ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k))))) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k))))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. SUM(x1) = x1 app(x1, x2) = app(x1, x2) cons(x1, x2) = cons(x2) sum(x1) = sum nil = nil Knuth-Bendix order [KBO] with precedence:app_2 > cons_1 and weight map: sum=5 cons_1=3 app_2=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) ---------------------------------------- (29) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(minus(x, y), z) -> MINUS(x, plus(y, z)) The graph contains the following edges 1 > 1 *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2) = x1 s(x1) = s(x1) minus(x1, x2) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 dummyConstant=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(x, 0) -> x minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(s(x), s(y)) -> minus(x, y) ---------------------------------------- (37) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) minus(minus(x, y), z) -> minus(x, plus(y, z)) app(nil, k) -> k app(l, nil) -> l app(cons(x, l), k) -> cons(x, app(l, k)) sum(cons(x, nil)) -> cons(x, nil) sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k))))) plus(s(x), s(y)) -> s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) plus(s(x), x) -> plus(if(gt(x, x), id(x), id(x)), s(x)) plus(zero, y) -> y plus(id(x), s(y)) -> s(plus(x, if(gt(s(y), y), y, s(y)))) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) gt(s(x), zero) -> true gt(zero, y) -> false gt(s(x), s(y)) -> gt(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (39) YES