/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 3 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (9) QDP (10) PisEmptyProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPOrderProof [EQUIVALENT, 9 ms] (14) QDP (15) PisEmptyProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: B(a, b(c(z, x, y), a)) -> B(b(z, c(y, z, a)), x) B(a, b(c(z, x, y), a)) -> B(z, c(y, z, a)) B(a, b(c(z, x, y), a)) -> C(y, z, a) F(c(a, b(b(z, a), y), x)) -> F(c(x, b(z, x), y)) F(c(a, b(b(z, a), y), x)) -> C(x, b(z, x), y) F(c(a, b(b(z, a), y), x)) -> B(z, x) C(f(c(a, y, a)), x, z) -> F(b(b(z, z), f(b(y, b(x, a))))) C(f(c(a, y, a)), x, z) -> B(b(z, z), f(b(y, b(x, a)))) C(f(c(a, y, a)), x, z) -> B(z, z) C(f(c(a, y, a)), x, z) -> F(b(y, b(x, a))) C(f(c(a, y, a)), x, z) -> B(y, b(x, a)) C(f(c(a, y, a)), x, z) -> B(x, a) The TRS R consists of the following rules: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: B(a, b(c(z, x, y), a)) -> C(y, z, a) C(f(c(a, y, a)), x, z) -> B(y, b(x, a)) The TRS R consists of the following rules: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: B(a, b(c(z, x, y), a)) -> C(y, z, a) C(f(c(a, y, a)), x, z) -> B(y, b(x, a)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: B(a, b(c(z, x, y), a)) -> C(y, z, a) C(f(c(a, y, a)), x, z) -> B(y, b(x, a)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(B(x_1, x_2)) = x_1 + x_2 POL(C(x_1, x_2, x_3)) = x_1 + 2*x_2 + 2*x_3 POL(a) = 0 POL(b(x_1, x_2)) = 2*x_1 + 2*x_2 POL(c(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(f(x_1)) = x_1 ---------------------------------------- (9) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F(c(a, b(b(z, a), y), x)) -> F(c(x, b(z, x), y)) The TRS R consists of the following rules: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(c(a, b(b(z, a), y), x)) -> F(c(x, b(z, x), y)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(F(x_1)) = [[0]] + [[0, 1]] * x_1 >>> <<< POL(c(x_1, x_2, x_3)) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 + [[0, 0], [1, 0]] * x_2 + [[1, 1], [1, 0]] * x_3 >>> <<< POL(a) = [[1], [1]] >>> <<< POL(b(x_1, x_2)) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(f(x_1)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) ---------------------------------------- (14) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: b(a, b(c(z, x, y), a)) -> b(b(z, c(y, z, a)), x) f(c(a, b(b(z, a), y), x)) -> f(c(x, b(z, x), y)) c(f(c(a, y, a)), x, z) -> f(b(b(z, z), f(b(y, b(x, a))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (16) YES