/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) MNOCProof [EQUIVALENT, 0 ms] (14) QDP (15) MRRProof [EQUIVALENT, 3 ms] (16) QDP (17) DependencyGraphProof [EQUIVALENT, 0 ms] (18) TRUE (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) QDPOrderProof [EQUIVALENT, 117 ms] (26) QDP (27) QDPOrderProof [EQUIVALENT, 102 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) PLUS(s(x), y) -> PLUS(p(s(x)), y) PLUS(s(x), y) -> P(s(x)) PLUS(x, s(y)) -> PLUS(x, p(s(y))) PLUS(x, s(y)) -> P(s(y)) TIMES(s(x), y) -> PLUS(y, times(x, y)) TIMES(s(x), y) -> TIMES(x, y) DIV(x, y) -> QUOT(x, y, y) QUOT(s(x), s(y), z) -> QUOT(x, y, z) QUOT(x, 0, s(z)) -> DIV(x, s(z)) DIV(div(x, y), z) -> DIV(x, times(zero(y), z)) DIV(div(x, y), z) -> TIMES(zero(y), z) DIV(div(x, y), z) -> ZERO(y) EQ(s(x), s(y)) -> EQ(x, y) DIVIDES(y, x) -> EQ(x, times(div(x, y), y)) DIVIDES(y, x) -> TIMES(div(x, y), y) DIVIDES(y, x) -> DIV(x, y) PRIME(s(s(x))) -> PR(s(s(x)), s(x)) PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y)) PR(x, s(s(y))) -> DIVIDES(s(s(y)), x) IF(false, x, y) -> PR(x, y) ZERO(s(x)) -> IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) ZERO(s(x)) -> EQ(x, s(0)) ZERO(s(x)) -> PLUS(zero(0), 0) ZERO(s(x)) -> ZERO(0) ZERO(s(x)) -> PLUS(0, zero(0)) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(p(s(x)), y) PLUS(s(x), y) -> PLUS(x, y) PLUS(x, s(y)) -> PLUS(x, p(s(y))) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(p(s(x)), y) PLUS(s(x), y) -> PLUS(x, y) PLUS(x, s(y)) -> PLUS(x, p(s(y))) The TRS R consists of the following rules: p(s(x)) -> x Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(p(s(x)), y) PLUS(s(x), y) -> PLUS(x, y) PLUS(x, s(y)) -> PLUS(x, p(s(y))) The TRS R consists of the following rules: p(s(x)) -> x The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: PLUS(s(x), y) -> PLUS(x, y) Strictly oriented rules of the TRS R: p(s(x)) -> x Used ordering: Polynomial interpretation [POLO]: POL(PLUS(x_1, x_2)) = x_1 + x_2 POL(p(x_1)) = x_1 POL(s(x_1)) = 1 + 2*x_1 ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(p(s(x)), y) PLUS(x, s(y)) -> PLUS(x, p(s(y))) R is empty. The set Q consists of the following terms: p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (18) TRUE ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(s(x), y) -> TIMES(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(x, y) -> QUOT(x, y, y) QUOT(s(x), s(y), z) -> QUOT(x, y, z) QUOT(x, 0, s(z)) -> DIV(x, s(z)) DIV(div(x, y), z) -> DIV(x, times(zero(y), z)) DIV(div(x, y), z) -> ZERO(y) ZERO(s(x)) -> IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) IF(false, x, y) -> PR(x, y) PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y)) PR(x, s(s(y))) -> DIVIDES(s(s(y)), x) DIVIDES(y, x) -> DIV(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. DIV(div(x, y), z) -> DIV(x, times(zero(y), z)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( DIV_2(x_1, x_2) ) = x_1 POL( times_2(x_1, x_2) ) = max{0, -2} POL( IF_3(x_1, ..., x_3) ) = max{0, x_1 + x_2 - 1} POL( div_2(x_1, x_2) ) = x_1 + 2 POL( zero_1(x_1) ) = 2 POL( divides_2(x_1, x_2) ) = 1 POL( quot_3(x_1, ..., x_3) ) = x_1 + 2 POL( s_1(x_1) ) = x_1 POL( if_3(x_1, ..., x_3) ) = max{0, 2x_1 - 1} POL( eq_2(x_1, x_2) ) = 1 POL( 0 ) = 0 POL( plus_2(x_1, x_2) ) = x_1 POL( false ) = 1 POL( true ) = 1 POL( pr_2(x_1, x_2) ) = 1 POL( p_1(x_1) ) = max{0, -2} POL( QUOT_3(x_1, ..., x_3) ) = x_1 POL( ZERO_1(x_1) ) = 2 POL( PR_2(x_1, x_2) ) = x_1 POL( DIVIDES_2(x_1, x_2) ) = x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) plus(x, 0) -> x divides(y, x) -> eq(x, times(div(x, y), y)) if(true, x, y) -> false pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(false, x, y) -> pr(x, y) pr(x, s(0)) -> true div(0, y) -> 0 eq(0, 0) -> true eq(s(x), 0) -> false div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(x, y) -> QUOT(x, y, y) QUOT(s(x), s(y), z) -> QUOT(x, y, z) QUOT(x, 0, s(z)) -> DIV(x, s(z)) DIV(div(x, y), z) -> ZERO(y) ZERO(s(x)) -> IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) IF(false, x, y) -> PR(x, y) PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y)) PR(x, s(s(y))) -> DIVIDES(s(s(y)), x) DIVIDES(y, x) -> DIV(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y), z) -> QUOT(x, y, z) DIV(div(x, y), z) -> ZERO(y) ZERO(s(x)) -> IF(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_3(x_1, ..., x_3) ) = 2x_2 + x_3 POL( eq_2(x_1, x_2) ) = 2x_2 + 2 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 2 POL( false ) = 0 POL( div_2(x_1, x_2) ) = x_2 + 2 POL( if_3(x_1, ..., x_3) ) = x_3 POL( plus_2(x_1, x_2) ) = x_1 + 2x_2 POL( divides_2(x_1, x_2) ) = max{0, x_2 - 2} POL( times_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( zero_1(x_1) ) = max{0, 2x_1 - 2} POL( true ) = 1 POL( pr_2(x_1, x_2) ) = 2x_1 + 1 POL( quot_3(x_1, ..., x_3) ) = x_2 + 2x_3 POL( p_1(x_1) ) = max{0, -2} POL( DIV_2(x_1, x_2) ) = 2x_1 POL( QUOT_3(x_1, ..., x_3) ) = 2x_1 POL( ZERO_1(x_1) ) = 2x_1 POL( PR_2(x_1, x_2) ) = 2x_1 + x_2 POL( DIVIDES_2(x_1, x_2) ) = x_1 + 2x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: plus(x, 0) -> x plus(0, y) -> y ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: DIV(x, y) -> QUOT(x, y, y) QUOT(x, 0, s(z)) -> DIV(x, s(z)) IF(false, x, y) -> PR(x, y) PR(x, s(s(y))) -> DIVIDES(s(s(y)), x) DIVIDES(y, x) -> DIV(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> DIV(x, s(z)) DIV(x, y) -> QUOT(x, y, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule DIV(x, y) -> QUOT(x, y, y) we obtained the following new rules [LPAR04]: (DIV(y_0, s(y_1)) -> QUOT(y_0, s(y_1), s(y_1)),DIV(y_0, s(y_1)) -> QUOT(y_0, s(y_1), s(y_1))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(x, 0, s(z)) -> DIV(x, s(z)) DIV(y_0, s(y_1)) -> QUOT(y_0, s(y_1), s(y_1)) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x plus(x, 0) -> x plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) plus(s(x), y) -> s(plus(p(s(x)), y)) plus(x, s(y)) -> s(plus(x, p(s(y)))) times(0, y) -> 0 times(s(0), y) -> y times(s(x), y) -> plus(y, times(x, y)) div(0, y) -> 0 div(x, y) -> quot(x, y, y) quot(zero(y), s(y), z) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(div(x, s(z))) div(div(x, y), z) -> div(x, times(zero(y), z)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) divides(y, x) -> eq(x, times(div(x, y), y)) prime(s(s(x))) -> pr(s(s(x)), s(x)) pr(x, s(0)) -> true pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y)) if(true, x, y) -> false if(false, x, y) -> pr(x, y) zero(div(x, x)) -> x zero(divides(x, x)) -> x zero(times(x, x)) -> x zero(quot(x, x, x)) -> x zero(s(x)) -> if(eq(x, s(0)), plus(zero(0), 0), s(plus(0, zero(0)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (34) TRUE