/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 67 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 0 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) HALF(s(s(x))) -> HALF(x) PLUS(s(x), y) -> PLUS(x, y) TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) TIMES(s(x), y) -> EVEN(s(x)) IF_TIMES(true, s(x), y) -> PLUS(times(half(s(x)), y), times(half(s(x)), y)) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(true, s(x), y) -> HALF(s(x)) IF_TIMES(false, s(x), y) -> PLUS(y, times(x, y)) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EVEN(s(s(x))) -> EVEN(x) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_TIMES(false, s(x), y) -> TIMES(x, y) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. TIMES(x1, x2) = x1 s(x1) = s(x1) IF_TIMES(x1, x2, x3) = x2 half(x1) = x1 0 = 0 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 0=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: half(s(s(x))) -> s(half(x)) half(0) -> 0 ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_TIMES_3(x_1, ..., x_3) ) = max{0, x_1 + 2x_2 + 2x_3 - 1} POL( even_1(x_1) ) = 1 POL( s_1(x_1) ) = 2x_1 + 2 POL( 0 ) = 0 POL( false ) = 1 POL( TIMES_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( half_1(x_1) ) = max{0, x_1 - 2} POL( true ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: even(s(0)) -> false even(s(s(x))) -> even(x) half(s(s(x))) -> s(half(x)) half(0) -> 0 even(0) -> true ---------------------------------------- (36) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES