/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 2 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 15 ms] (41) QDP (42) PisEmptyProof [EQUIVALENT, 0 ms] (43) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) APP(cons(N, L), Y) -> APP(L, Y) LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L)) LOW(N, cons(M, L)) -> LE(M, N) IFLOW(true, N, cons(M, L)) -> LOW(N, L) IFLOW(false, N, cons(M, L)) -> LOW(N, L) HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L)) HIGH(N, cons(M, L)) -> LE(M, N) IFHIGH(true, N, cons(M, L)) -> HIGH(N, L) IFHIGH(false, N, cons(M, L)) -> HIGH(N, L) QUICKSORT(cons(N, L)) -> APP(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L)) QUICKSORT(cons(N, L)) -> LOW(N, L) QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L)) QUICKSORT(cons(N, L)) -> HIGH(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(N, L), Y) -> APP(L, Y) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(N, L), Y) -> APP(L, Y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(N, L), Y) -> APP(L, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(cons(N, L), Y) -> APP(L, Y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(X), s(Y)) -> LE(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L)) IFHIGH(true, N, cons(M, L)) -> HIGH(N, L) IFHIGH(false, N, cons(M, L)) -> HIGH(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L)) IFHIGH(true, N, cons(M, L)) -> HIGH(N, L) IFHIGH(false, N, cons(M, L)) -> HIGH(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L)) IFHIGH(true, N, cons(M, L)) -> HIGH(N, L) IFHIGH(false, N, cons(M, L)) -> HIGH(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HIGH(N, cons(M, L)) -> IFHIGH(le(M, N), N, cons(M, L)) The graph contains the following edges 1 >= 2, 2 >= 3 *IFHIGH(true, N, cons(M, L)) -> HIGH(N, L) The graph contains the following edges 2 >= 1, 3 > 2 *IFHIGH(false, N, cons(M, L)) -> HIGH(N, L) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L)) IFLOW(true, N, cons(M, L)) -> LOW(N, L) IFLOW(false, N, cons(M, L)) -> LOW(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L)) IFLOW(true, N, cons(M, L)) -> LOW(N, L) IFLOW(false, N, cons(M, L)) -> LOW(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L)) IFLOW(true, N, cons(M, L)) -> LOW(N, L) IFLOW(false, N, cons(M, L)) -> LOW(N, L) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LOW(N, cons(M, L)) -> IFLOW(le(M, N), N, cons(M, L)) The graph contains the following edges 1 >= 2, 2 >= 3 *IFLOW(true, N, cons(M, L)) -> LOW(N, L) The graph contains the following edges 2 >= 1, 3 > 2 *IFLOW(false, N, cons(M, L)) -> LOW(N, L) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L)) QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L)) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L)) QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L)) The TRS R consists of the following rules: low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(false, N, cons(M, L)) -> low(N, L) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) quicksort(nil) quicksort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(cons(x0, x1), x2) quicksort(nil) quicksort(cons(x0, x1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L)) QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L)) The TRS R consists of the following rules: low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(false, N, cons(M, L)) -> low(N, L) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUICKSORT(cons(N, L)) -> QUICKSORT(high(N, L)) QUICKSORT(cons(N, L)) -> QUICKSORT(low(N, L)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( QUICKSORT_1(x_1) ) = max{0, 2x_1 - 1} POL( high_2(x_1, x_2) ) = 2x_2 POL( nil ) = 0 POL( cons_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( ifhigh_3(x_1, ..., x_3) ) = 2x_3 POL( le_2(x_1, x_2) ) = 0 POL( true ) = 0 POL( low_2(x_1, x_2) ) = 2x_2 POL( iflow_3(x_1, ..., x_3) ) = max{0, 2x_3 - 2} POL( false ) = 0 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(false, N, cons(M, L)) -> low(N, L) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) ---------------------------------------- (41) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(false, N, cons(M, L)) -> low(N, L) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, cons(x1, x2)) iflow(true, x0, cons(x1, x2)) iflow(false, x0, cons(x1, x2)) high(x0, nil) high(x0, cons(x1, x2)) ifhigh(true, x0, cons(x1, x2)) ifhigh(false, x0, cons(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (43) YES