/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ) Problem 1: Innermost Equivalent Processor: -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: EVEN(s(s(x))) -> EVEN(x) HALF(s(s(x))) -> HALF(x) IF_TIMES(false,s(x),y) -> PLUS(y,times(x,y)) IF_TIMES(false,s(x),y) -> TIMES(x,y) IF_TIMES(true,s(x),y) -> HALF(s(x)) IF_TIMES(true,s(x),y) -> PLUS(times(half(s(x)),y),times(half(s(x)),y)) IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) PLUS(s(x),y) -> PLUS(x,y) TIMES(s(x),y) -> EVEN(s(x)) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) Problem 1: SCC Processor: -> Pairs: EVEN(s(s(x))) -> EVEN(x) HALF(s(s(x))) -> HALF(x) IF_TIMES(false,s(x),y) -> PLUS(y,times(x,y)) IF_TIMES(false,s(x),y) -> TIMES(x,y) IF_TIMES(true,s(x),y) -> HALF(s(x)) IF_TIMES(true,s(x),y) -> PLUS(times(half(s(x)),y),times(half(s(x)),y)) IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) PLUS(s(x),y) -> PLUS(x,y) TIMES(s(x),y) -> EVEN(s(x)) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: PLUS(s(x),y) -> PLUS(x,y) ->->-> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->->Cycle: ->->-> Pairs: HALF(s(s(x))) -> HALF(x) ->->-> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->->Cycle: ->->-> Pairs: EVEN(s(s(x))) -> EVEN(x) ->->-> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->->Cycle: ->->-> Pairs: IF_TIMES(false,s(x),y) -> TIMES(x,y) IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) ->->-> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: PLUS(s(x),y) -> PLUS(x,y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Projection: pi(PLUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: HALF(s(s(x))) -> HALF(x) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Projection: pi(HALF) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: EVEN(s(s(x))) -> EVEN(x) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Projection: pi(EVEN) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: IF_TIMES(false,s(x),y) -> TIMES(x,y) IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) -> Usable rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [even](X) = 1 [half](X) = X [0] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [IF_TIMES](X1,X2,X3) = 2.X2 + 2.X3 + 2 [TIMES](X1,X2) = 2.X1 + 2.X2 + 2 Problem 1.4: SCC Processor: -> Pairs: IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) ->->-> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) Problem 1.4: Reduction Pairs Processor: -> Pairs: IF_TIMES(true,s(x),y) -> TIMES(half(s(x)),y) TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) -> Usable rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [even](X) = 2.X + 1 [half](X) = 1/2.X + 1/2 [0] = 1 [false] = 1/2 [s](X) = X + 2 [true] = 1/2 [IF_TIMES](X1,X2,X3) = 2.X2 + X3 + 2 [TIMES](X1,X2) = 2.X1 + X2 + 2 Problem 1.4: SCC Processor: -> Pairs: TIMES(s(x),y) -> IF_TIMES(even(s(x)),s(x),y) -> Rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) if_times(false,s(x),y) -> plus(y,times(x,y)) if_times(true,s(x),y) -> plus(times(half(s(x)),y),times(half(s(x)),y)) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) times(0,y) -> 0 times(s(x),y) -> if_times(even(s(x)),s(x),y) ->Strongly Connected Components: There is no strongly connected component The problem is finite.