/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR N X X1 X2 XS) (RULES 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ) Problem 1: Dependency Pairs Processor: -> Pairs: 2ND(cons(X,XS)) -> ACTIVATE(XS) 2ND(cons(X,XS)) -> HEAD(activate(XS)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) Problem 1: SCC Processor: -> Pairs: 2ND(cons(X,XS)) -> ACTIVATE(XS) 2ND(cons(X,XS)) -> HEAD(activate(XS)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) SEL(s(N),cons(X,XS)) -> ACTIVATE(XS) SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->->Cycle: ->->-> Pairs: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) -> Usable rules: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [from](X) = 2.X + 2 [s](X) = X [take](X1,X2) = X1 + 2.X2 + 1 [0] = 2 [cons](X1,X2) = X2 [n__from](X) = 2.X + 2 [n__s](X) = X [n__take](X1,X2) = X1 + 2.X2 + 1 [nil] = 2 [ACTIVATE](X) = X [TAKE](X1,X2) = 2.X2 Problem 1.1: SCC Processor: -> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) Problem 1.1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) -> Usable rules: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [from](X) = 0 [s](X) = 2.X + 2 [take](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [cons](X1,X2) = 2.X2 [n__from](X) = 0 [n__s](X) = 2.X + 2 [n__take](X1,X2) = 2.X1 + 2.X2 + 2 [nil] = 2 [ACTIVATE](X) = 2.X [TAKE](X1,X2) = X1 + X2 Problem 1.1: SCC Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) Problem 1.1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) -> Usable rules: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [from](X) = 2.X + 2 [s](X) = X [take](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 2 [cons](X1,X2) = X2 [n__from](X) = 2.X + 2 [n__s](X) = X [n__take](X1,X2) = 2.X1 + 2.X2 + 2 [nil] = 0 [ACTIVATE](X) = X + 2 [TAKE](X1,X2) = 2.X1 + X2 + 2 Problem 1.1: SCC Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) Problem 1.1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> ACTIVATE(X2) ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) -> Usable rules: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [from](X) = 0 [s](X) = 2.X + 1 [take](X1,X2) = 2.X1 + 2.X2 + 1 [0] = 2 [cons](X1,X2) = 2.X2 [n__from](X) = 0 [n__s](X) = 2.X + 1 [n__take](X1,X2) = 2.X1 + 2.X2 + 1 [nil] = 2 [ACTIVATE](X) = 2.X [TAKE](X1,X2) = 2.X1 + X2 + 2 Problem 1.1: SCC Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) ->->-> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) Problem 1.1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__take(X1,X2)) -> TAKE(activate(X1),activate(X2)) TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) -> Usable rules: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [from](X) = 0 [s](X) = 2.X + 1 [take](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 2 [cons](X1,X2) = 2.X2 [n__from](X) = 0 [n__s](X) = 2.X + 1 [n__take](X1,X2) = 2.X1 + 2.X2 + 2 [nil] = 2 [ACTIVATE](X) = 2.X + 2 [TAKE](X1,X2) = 2.X1 + 2.X2 + 1 Problem 1.1: SCC Processor: -> Pairs: TAKE(s(N),cons(X,XS)) -> ACTIVATE(XS) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: SEL(s(N),cons(X,XS)) -> SEL(N,activate(XS)) -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Projection: pi(SEL) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: 2nd(cons(X,XS)) -> head(activate(XS)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) head(cons(X,XS)) -> X s(X) -> n__s(X) sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) sel(0,cons(X,XS)) -> X take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) take(0,XS) -> nil take(X1,X2) -> n__take(X1,X2) ->Strongly Connected Components: There is no strongly connected component The problem is finite.