/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 9 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) DependencyGraphProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) TransformationProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [EQUIVALENT, 0 ms] (48) QDP (49) TransformationProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) TransformationProof [EQUIVALENT, 0 ms] (54) QDP (55) NonInfProof [EQUIVALENT, 79 ms] (56) AND (57) QDP (58) DependencyGraphProof [EQUIVALENT, 0 ms] (59) TRUE (60) QDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) PLUS(s(x), y) -> PLUS(x, y) TIMES(s(x), y) -> PLUS(y, times(x, y)) TIMES(s(x), y) -> TIMES(x, y) LOG(s(x), s(s(b))) -> LOOP(s(x), s(s(b)), s(0), 0) LOOP(x, s(s(b)), s(y), z) -> IF(le(x, s(y)), x, s(s(b)), s(y), z) LOOP(x, s(s(b)), s(y), z) -> LE(x, s(y)) IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) IF(false, x, b, y, z) -> TIMES(b, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(s(x), y) -> TIMES(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(x, s(s(b)), s(y), z) -> IF(le(x, s(y)), x, s(s(b)), s(y), z) IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) log(x, 0) -> baseError log(x, s(0)) -> baseError log(0, s(s(b))) -> logZeroError log(s(x), s(s(b))) -> loop(s(x), s(s(b)), s(0), 0) loop(x, s(s(b)), s(y), z) -> if(le(x, s(y)), x, s(s(b)), s(y), z) if(true, x, b, y, z) -> z if(false, x, b, y, z) -> loop(x, b, times(b, y), s(z)) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(x, s(s(b)), s(y), z) -> IF(le(x, s(y)), x, s(s(b)), s(y), z) IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. log(x0, 0) log(x0, s(0)) log(0, s(s(x0))) log(s(x0), s(s(x1))) loop(x0, s(s(x1)), s(x2), x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(x, s(s(b)), s(y), z) -> IF(le(x, s(y)), x, s(s(b)), s(y), z) IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule LOOP(x, s(s(b)), s(y), z) -> IF(le(x, s(y)), x, s(s(b)), s(y), z) at position [0] we obtained the following new rules [LPAR04]: (LOOP(0, s(s(y1)), s(y2), y3) -> IF(true, 0, s(s(y1)), s(y2), y3),LOOP(0, s(s(y1)), s(y2), y3) -> IF(true, 0, s(s(y1)), s(y2), y3)) (LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3),LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) LOOP(0, s(s(y1)), s(y2), y3) -> IF(true, 0, s(s(y1)), s(y2), y3) LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule IF(false, x, b, y, z) -> LOOP(x, b, times(b, y), s(z)) at position [2] we obtained the following new rules [LPAR04]: (IF(false, y0, 0, x0, y3) -> LOOP(y0, 0, 0, s(y3)),IF(false, y0, 0, x0, y3) -> LOOP(y0, 0, 0, s(y3))) (IF(false, y0, s(x0), x1, y3) -> LOOP(y0, s(x0), plus(x1, times(x0, x1)), s(y3)),IF(false, y0, s(x0), x1, y3) -> LOOP(y0, s(x0), plus(x1, times(x0, x1)), s(y3))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, y0, 0, x0, y3) -> LOOP(y0, 0, 0, s(y3)) IF(false, y0, s(x0), x1, y3) -> LOOP(y0, s(x0), plus(x1, times(x0, x1)), s(y3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, y0, s(x0), x1, y3) -> LOOP(y0, s(x0), plus(x1, times(x0, x1)), s(y3)) LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF(false, y0, s(x0), x1, y3) -> LOOP(y0, s(x0), plus(x1, times(x0, x1)), s(y3)) we obtained the following new rules [LPAR04]: (IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), plus(s(z2), times(s(z1), s(z2))), s(z3)),IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), plus(s(z2), times(s(z1), s(z2))), s(z3))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), plus(s(z2), times(s(z1), s(z2))), s(z3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), plus(s(z2), times(s(z1), s(z2))), s(z3)) at position [2] we obtained the following new rules [LPAR04]: (IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, times(s(z1), s(z2)))), s(z3)),IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, times(s(z1), s(z2)))), s(z3))) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, times(s(z1), s(z2)))), s(z3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, times(s(z1), s(z2)))), s(z3)) at position [2,0,1] we obtained the following new rules [LPAR04]: (IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, plus(s(z2), times(z1, s(z2))))), s(z3)),IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, plus(s(z2), times(z1, s(z2))))), s(z3))) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, plus(s(z2), times(z1, s(z2))))), s(z3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, plus(s(z2), times(z1, s(z2))))), s(z3)) at position [2,0,1] we obtained the following new rules [LPAR04]: (IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(z3)),IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(z3))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(z3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule LOOP(s(x0), s(s(y1)), s(x1), y3) -> IF(le(x0, x1), s(x0), s(s(y1)), s(x1), y3) we obtained the following new rules [LPAR04]: (LOOP(s(z0), s(s(z1)), s(y_2), s(z3)) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(z3)),LOOP(s(z0), s(s(z1)), s(y_2), s(z3)) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(z3))) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(z3)) LOOP(s(z0), s(s(z1)), s(y_2), s(z3)) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(z3)) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF(false, s(z0), s(s(z1)), s(z2), z3) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(z3)) we obtained the following new rules [LPAR04]: (IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))),IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3)))) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(z0), s(s(z1)), s(y_2), s(z3)) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(z3)) IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule LOOP(s(z0), s(s(z1)), s(y_2), s(z3)) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(z3)) we obtained the following new rules [LPAR04]: (LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))),LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3)))) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) the following chains were created: *We consider the chain LOOP(s(x4), s(s(x5)), s(x6), s(s(x7))) -> IF(le(x4, x6), s(x4), s(s(x5)), s(x6), s(s(x7))), IF(false, s(x8), s(s(x9)), s(x10), s(x11)) -> LOOP(s(x8), s(s(x9)), s(plus(x10, s(plus(x10, times(x9, s(x10)))))), s(s(x11))) which results in the following constraint: (1) (IF(le(x4, x6), s(x4), s(s(x5)), s(x6), s(s(x7)))=IF(false, s(x8), s(s(x9)), s(x10), s(x11)) ==> IF(false, s(x8), s(s(x9)), s(x10), s(x11))_>=_LOOP(s(x8), s(s(x9)), s(plus(x10, s(plus(x10, times(x9, s(x10)))))), s(s(x11)))) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (le(x4, x6)=false ==> IF(false, s(x4), s(s(x5)), s(x6), s(s(x7)))_>=_LOOP(s(x4), s(s(x5)), s(plus(x6, s(plus(x6, times(x5, s(x6)))))), s(s(s(x7))))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x4, x6)=false which results in the following new constraints: (3) (le(x26, x25)=false & (\/x27,x28:le(x26, x25)=false ==> IF(false, s(x26), s(s(x27)), s(x25), s(s(x28)))_>=_LOOP(s(x26), s(s(x27)), s(plus(x25, s(plus(x25, times(x27, s(x25)))))), s(s(s(x28))))) ==> IF(false, s(s(x26)), s(s(x5)), s(s(x25)), s(s(x7)))_>=_LOOP(s(s(x26)), s(s(x5)), s(plus(s(x25), s(plus(s(x25), times(x5, s(s(x25))))))), s(s(s(x7))))) (4) (false=false ==> IF(false, s(s(x29)), s(s(x5)), s(0), s(s(x7)))_>=_LOOP(s(s(x29)), s(s(x5)), s(plus(0, s(plus(0, times(x5, s(0)))))), s(s(s(x7))))) We simplified constraint (3) using rule (VI) where we applied the induction hypothesis (\/x27,x28:le(x26, x25)=false ==> IF(false, s(x26), s(s(x27)), s(x25), s(s(x28)))_>=_LOOP(s(x26), s(s(x27)), s(plus(x25, s(plus(x25, times(x27, s(x25)))))), s(s(s(x28))))) with sigma = [x27 / x5, x28 / x7] which results in the following new constraint: (5) (IF(false, s(x26), s(s(x5)), s(x25), s(s(x7)))_>=_LOOP(s(x26), s(s(x5)), s(plus(x25, s(plus(x25, times(x5, s(x25)))))), s(s(s(x7)))) ==> IF(false, s(s(x26)), s(s(x5)), s(s(x25)), s(s(x7)))_>=_LOOP(s(s(x26)), s(s(x5)), s(plus(s(x25), s(plus(s(x25), times(x5, s(s(x25))))))), s(s(s(x7))))) We simplified constraint (4) using rules (I), (II) which results in the following new constraint: (6) (IF(false, s(s(x29)), s(s(x5)), s(0), s(s(x7)))_>=_LOOP(s(s(x29)), s(s(x5)), s(plus(0, s(plus(0, times(x5, s(0)))))), s(s(s(x7))))) For Pair LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))) the following chains were created: *We consider the chain IF(false, s(x12), s(s(x13)), s(x14), s(x15)) -> LOOP(s(x12), s(s(x13)), s(plus(x14, s(plus(x14, times(x13, s(x14)))))), s(s(x15))), LOOP(s(x16), s(s(x17)), s(x18), s(s(x19))) -> IF(le(x16, x18), s(x16), s(s(x17)), s(x18), s(s(x19))) which results in the following constraint: (1) (LOOP(s(x12), s(s(x13)), s(plus(x14, s(plus(x14, times(x13, s(x14)))))), s(s(x15)))=LOOP(s(x16), s(s(x17)), s(x18), s(s(x19))) ==> LOOP(s(x16), s(s(x17)), s(x18), s(s(x19)))_>=_IF(le(x16, x18), s(x16), s(s(x17)), s(x18), s(s(x19)))) We simplified constraint (1) using rules (I), (II), (III), (IV), (VII) which results in the following new constraint: (2) (LOOP(s(x12), s(s(x13)), s(x18), s(s(x15)))_>=_IF(le(x12, x18), s(x12), s(s(x13)), s(x18), s(s(x15)))) To summarize, we get the following constraints P__>=_ for the following pairs. *IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) *(IF(false, s(x26), s(s(x5)), s(x25), s(s(x7)))_>=_LOOP(s(x26), s(s(x5)), s(plus(x25, s(plus(x25, times(x5, s(x25)))))), s(s(s(x7)))) ==> IF(false, s(s(x26)), s(s(x5)), s(s(x25)), s(s(x7)))_>=_LOOP(s(s(x26)), s(s(x5)), s(plus(s(x25), s(plus(s(x25), times(x5, s(s(x25))))))), s(s(s(x7))))) *(IF(false, s(s(x29)), s(s(x5)), s(0), s(s(x7)))_>=_LOOP(s(s(x29)), s(s(x5)), s(plus(0, s(plus(0, times(x5, s(0)))))), s(s(s(x7))))) *LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))) *(LOOP(s(x12), s(s(x13)), s(x18), s(s(x15)))_>=_IF(le(x12, x18), s(x12), s(s(x13)), s(x18), s(s(x15)))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(IF(x_1, x_2, x_3, x_4, x_5)) = -1 - x_1 + x_2 + x_3 - x_4 POL(LOOP(x_1, x_2, x_3, x_4)) = x_1 + x_2 - x_3 POL(c) = -1 POL(false) = 0 POL(le(x_1, x_2)) = 0 POL(plus(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 1 + x_1 POL(times(x_1, x_2)) = 0 POL(true) = 0 The following pairs are in P_>: LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))) The following pairs are in P_bound: IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) The following rules are usable: 0 -> times(0, y) plus(y, times(x, y)) -> times(s(x), y) y -> plus(0, y) s(plus(x, y)) -> plus(s(x), y) true -> le(0, y) le(x, y) -> le(s(x), s(y)) false -> le(s(x), 0) ---------------------------------------- (56) Complex Obligation (AND) ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, s(z0), s(s(z1)), s(z2), s(z3)) -> LOOP(s(z0), s(s(z1)), s(plus(z2, s(plus(z2, times(z1, s(z2)))))), s(s(z3))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (59) TRUE ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: LOOP(s(z0), s(s(z1)), s(y_2), s(s(z3))) -> IF(le(z0, y_2), s(z0), s(s(z1)), s(y_2), s(s(z3))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) le(0, y) -> true le(s(x), s(y)) -> le(x, y) le(s(x), 0) -> false The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (62) TRUE