/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 1 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) AND (13) QDP (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) NonTerminationLoopProof [COMPLETE, 0 ms] (18) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, x), y), ap(s, z)) -> AP(ap(ap(g, x), y), ap(ap(x, y), 0)) AP(ap(ap(g, x), y), ap(s, z)) -> AP(ap(x, y), 0) AP(ap(ap(g, x), y), ap(s, z)) -> AP(x, y) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, x), y), ap(s, z)) -> AP(x, y) AP(ap(ap(g, x), y), ap(s, z)) -> AP(ap(ap(g, x), y), ap(ap(x, y), 0)) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. AP(ap(ap(g, x), y), ap(s, z)) -> AP(x, y) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. AP(x1, x2) = x1 ap(x1, x2) = ap(x1, x2) g = g Knuth-Bendix order [KBO] with precedence:trivial and weight map: ap_2=1 g=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, x), y), ap(s, z)) -> AP(ap(ap(g, x), y), ap(ap(x, y), 0)) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule AP(ap(ap(g, x), y), ap(s, z)) -> AP(ap(ap(g, x), y), ap(ap(x, y), 0)) at position [1] we obtained the following new rules [LPAR04]: (AP(ap(ap(g, f), x0), ap(s, y2)) -> AP(ap(ap(g, f), x0), ap(x0, 0)),AP(ap(ap(g, f), x0), ap(s, y2)) -> AP(ap(ap(g, f), x0), ap(x0, 0))) (AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(s, y2)) -> AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(ap(ap(ap(g, x0), x1), ap(ap(x0, x1), 0)), 0)),AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(s, y2)) -> AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(ap(ap(ap(g, x0), x1), ap(ap(x0, x1), 0)), 0))) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, f), x0), ap(s, y2)) -> AP(ap(ap(g, f), x0), ap(x0, 0)) AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(s, y2)) -> AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(ap(ap(ap(g, x0), x1), ap(ap(x0, x1), 0)), 0)) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (12) Complex Obligation (AND) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(s, y2)) -> AP(ap(ap(g, ap(ap(g, x0), x1)), ap(s, x2)), ap(ap(ap(ap(g, x0), x1), ap(ap(x0, x1), 0)), 0)) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, f), x0), ap(s, y2)) -> AP(ap(ap(g, f), x0), ap(x0, 0)) The TRS R consists of the following rules: ap(f, x) -> x ap(ap(ap(g, x), y), ap(s, z)) -> ap(ap(ap(g, x), y), ap(ap(x, y), 0)) The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: AP(ap(ap(g, f), x0), ap(s, y2)) -> AP(ap(ap(g, f), x0), ap(x0, 0)) The TRS R consists of the following rules: ap(f, x) -> x The set Q consists of the following terms: ap(f, x0) ap(ap(ap(g, x0), x1), ap(s, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = AP(ap(ap(g, f), x0), ap(s, y2)) evaluates to t =AP(ap(ap(g, f), x0), ap(x0, 0)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [x0 / s, y2 / 0] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from AP(ap(ap(g, f), s), ap(s, 0)) to AP(ap(ap(g, f), s), ap(s, 0)). ---------------------------------------- (18) NO