/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o active : [o] --> o cons : [o * o] --> o mark : [o] --> o tail : [o] --> o zeros : [] --> o active(zeros) => mark(cons(0, zeros)) active(tail(cons(X, Y))) => mark(Y) mark(zeros) => active(zeros) mark(cons(X, Y)) => active(cons(mark(X), Y)) mark(0) => active(0) mark(tail(X)) => active(tail(mark(X))) cons(mark(X), Y) => cons(X, Y) cons(X, mark(Y)) => cons(X, Y) cons(active(X), Y) => cons(X, Y) cons(X, active(Y)) => cons(X, Y) tail(mark(X)) => tail(X) tail(active(X)) => tail(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(zeros) >? mark(cons(0, zeros)) active(tail(cons(X, Y))) >? mark(Y) mark(zeros) >? active(zeros) mark(cons(X, Y)) >? active(cons(mark(X), Y)) mark(0) >? active(0) mark(tail(X)) >? active(tail(mark(X))) cons(mark(X), Y) >? cons(X, Y) cons(X, mark(Y)) >? cons(X, Y) cons(active(X), Y) >? cons(X, Y) cons(X, active(Y)) >? cons(X, Y) tail(mark(X)) >? tail(X) tail(active(X)) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 active = \y0.y0 cons = \y0y1.y0 + y1 mark = \y0.y0 tail = \y0.1 + 2y0 zeros = 0 Using this interpretation, the requirements translate to: [[active(zeros)]] = 0 >= 0 = [[mark(cons(0, zeros))]] [[active(tail(cons(_x0, _x1)))]] = 1 + 2x0 + 2x1 > x1 = [[mark(_x1)]] [[mark(zeros)]] = 0 >= 0 = [[active(zeros)]] [[mark(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[active(cons(mark(_x0), _x1))]] [[mark(0)]] = 0 >= 0 = [[active(0)]] [[mark(tail(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[active(tail(mark(_x0)))]] [[cons(mark(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(_x0, mark(_x1))]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(active(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(_x0, active(_x1))]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[tail(mark(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[tail(_x0)]] [[tail(active(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[tail(_x0)]] We can thus remove the following rules: active(tail(cons(X, Y))) => mark(Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): active(zeros) >? mark(cons(0, zeros)) mark(zeros) >? active(zeros) mark(cons(X, Y)) >? active(cons(mark(X), Y)) mark(0) >? active(0) mark(tail(X)) >? active(tail(mark(X))) cons(mark(X), Y) >? cons(X, Y) cons(X, mark(Y)) >? cons(X, Y) cons(active(X), Y) >? cons(X, Y) cons(X, active(Y)) >? cons(X, Y) tail(mark(X)) >? tail(X) tail(active(X)) >? tail(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 active = \y0.y0 cons = \y0y1.y0 + y1 mark = \y0.2y0 tail = \y0.2 + 2y0 zeros = 0 Using this interpretation, the requirements translate to: [[active(zeros)]] = 0 >= 0 = [[mark(cons(0, zeros))]] [[mark(zeros)]] = 0 >= 0 = [[active(zeros)]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x1 + 2x0 = [[active(cons(mark(_x0), _x1))]] [[mark(0)]] = 0 >= 0 = [[active(0)]] [[mark(tail(_x0))]] = 4 + 4x0 > 2 + 4x0 = [[active(tail(mark(_x0)))]] [[cons(mark(_x0), _x1)]] = x1 + 2x0 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(_x0, mark(_x1))]] = x0 + 2x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(active(_x0), _x1)]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[cons(_x0, active(_x1))]] = x0 + x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[tail(mark(_x0))]] = 2 + 4x0 >= 2 + 2x0 = [[tail(_x0)]] [[tail(active(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[tail(_x0)]] We can thus remove the following rules: mark(tail(X)) => active(tail(mark(X))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] active#(zeros) =#> mark#(cons(0, zeros)) 1] active#(zeros) =#> cons#(0, zeros) 2] mark#(zeros) =#> active#(zeros) 3] mark#(cons(X, Y)) =#> active#(cons(mark(X), Y)) 4] mark#(cons(X, Y)) =#> cons#(mark(X), Y) 5] mark#(cons(X, Y)) =#> mark#(X) 6] mark#(0) =#> active#(0) 7] cons#(mark(X), Y) =#> cons#(X, Y) 8] cons#(X, mark(Y)) =#> cons#(X, Y) 9] cons#(active(X), Y) =#> cons#(X, Y) 10] cons#(X, active(Y)) =#> cons#(X, Y) 11] tail#(mark(X)) =#> tail#(X) 12] tail#(active(X)) =#> tail#(X) Rules R_0: active(zeros) => mark(cons(0, zeros)) mark(zeros) => active(zeros) mark(cons(X, Y)) => active(cons(mark(X), Y)) mark(0) => active(0) cons(mark(X), Y) => cons(X, Y) cons(X, mark(Y)) => cons(X, Y) cons(active(X), Y) => cons(X, Y) cons(X, active(Y)) => cons(X, Y) tail(mark(X)) => tail(X) tail(active(X)) => tail(X) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 3, 4, 5 * 1 : * 2 : 0, 1 * 3 : * 4 : 7, 8, 9, 10 * 5 : 2, 3, 4, 5, 6 * 6 : * 7 : 7, 8, 9, 10 * 8 : 7, 8, 9, 10 * 9 : 7, 8, 9, 10 * 10 : 7, 8, 9, 10 * 11 : 11, 12 * 12 : 11, 12 This graph has the following strongly connected components: P_1: active#(zeros) =#> mark#(cons(0, zeros)) mark#(zeros) =#> active#(zeros) mark#(cons(X, Y)) =#> mark#(X) P_2: cons#(mark(X), Y) =#> cons#(X, Y) cons#(X, mark(Y)) =#> cons#(X, Y) cons#(active(X), Y) =#> cons#(X, Y) cons#(X, active(Y)) =#> cons#(X, Y) P_3: tail#(mark(X)) =#> tail#(X) tail#(active(X)) =#> tail#(X) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(tail#) = 1 Thus, we can orient the dependency pairs as follows: nu(tail#(mark(X))) = mark(X) |> X = nu(tail#(X)) nu(tail#(active(X))) = active(X) |> X = nu(tail#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(cons#) = 1 Thus, we can orient the dependency pairs as follows: nu(cons#(mark(X), Y)) = mark(X) |> X = nu(cons#(X, Y)) nu(cons#(X, mark(Y))) = X = X = nu(cons#(X, Y)) nu(cons#(active(X), Y)) = active(X) |> X = nu(cons#(X, Y)) nu(cons#(X, active(Y))) = X = X = nu(cons#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_4, R_0, minimal, f), where P_4 contains: cons#(X, mark(Y)) =#> cons#(X, Y) cons#(X, active(Y)) =#> cons#(X, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(cons#) = 2 Thus, we can orient the dependency pairs as follows: nu(cons#(X, mark(Y))) = mark(Y) |> Y = nu(cons#(X, Y)) nu(cons#(X, active(Y))) = active(Y) |> Y = nu(cons#(X, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). The formative rules of (P_1, R_0) are R_1 ::= active(zeros) => mark(cons(0, zeros)) mark(zeros) => active(zeros) mark(cons(X, Y)) => active(cons(mark(X), Y)) mark(0) => active(0) cons(mark(X), Y) => cons(X, Y) cons(X, mark(Y)) => cons(X, Y) cons(active(X), Y) => cons(X, Y) cons(X, active(Y)) => cons(X, Y) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_1, R_0, minimal, formative) by (P_1, R_1, minimal, formative). Thus, the original system is terminating if (P_1, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_1, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_1, R_1) are: cons(mark(X), Y) => cons(X, Y) cons(X, mark(Y)) => cons(X, Y) cons(active(X), Y) => cons(X, Y) cons(X, active(Y)) => cons(X, Y) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: active#(zeros) >? mark#(cons(0, zeros)) mark#(zeros) >? active#(zeros) mark#(cons(X, Y)) >? mark#(X) cons(mark(X), Y) >= cons(X, Y) cons(X, mark(Y)) >= cons(X, Y) cons(active(X), Y) >= cons(X, Y) cons(X, active(Y)) >= cons(X, Y) We orient these requirements with a polynomial interpretation in the natural numbers. We consider usable_rules with respect to the following argument filtering: This leaves the following ordering requirements: active#(zeros) > mark#(cons(0, zeros)) mark#(zeros) >= active#(zeros) mark#(cons(X, Y)) >= mark#(X) The following interpretation satisfies the requirements: 0 = 0 active = \y0.0 active# = \y0.2y0 cons = \y0y1.2y0 mark = \y0.0 mark# = \y0.3y0 zeros = 3 Using this interpretation, the requirements translate to: [[active#(zeros)]] = 6 > 0 = [[mark#(cons(0, zeros))]] [[mark#(zeros)]] = 9 > 6 = [[active#(zeros)]] [[mark#(cons(_x0, _x1))]] = 6x0 >= 3x0 = [[mark#(_x0)]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_1, R_1, minimal, formative) by (P_5, R_1, minimal, formative), where P_5 consists of: mark#(cons(X, Y)) =#> mark#(X) Thus, the original system is terminating if (P_5, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_1, minimal, formative). We apply the subterm criterion with the following projection function: nu(mark#) = 1 Thus, we can orient the dependency pairs as follows: nu(mark#(cons(X, Y))) = cons(X, Y) |> X = nu(mark#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_1, minimal, f) by ({}, R_1, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.