/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 18 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) TransformationProof [EQUIVALENT, 0 ms] (13) QDP (14) TransformationProof [EQUIVALENT, 0 ms] (15) QDP (16) NonTerminationLoopProof [COMPLETE, 0 ms] (17) NO (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPOrderProof [EQUIVALENT, 9 ms] (31) QDP (32) PisEmptyProof [EQUIVALENT, 0 ms] (33) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M) FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M) SIEVE(cons(0, Y)) -> SIEVE(Y) SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N)) SIEVE(cons(s(N), Y)) -> FILTER(Y, N, N) NATS(N) -> NATS(s(N)) ZPRIMES -> SIEVE(nats(s(s(0)))) ZPRIMES -> NATS(s(s(0))) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(N) -> NATS(s(N)) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(N) -> NATS(s(N)) R is empty. The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(N) -> NATS(s(N)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule NATS(N) -> NATS(s(N)) we obtained the following new rules [LPAR04]: (NATS(s(z0)) -> NATS(s(s(z0))),NATS(s(z0)) -> NATS(s(s(z0)))) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(s(z0)) -> NATS(s(s(z0))) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule NATS(s(z0)) -> NATS(s(s(z0))) we obtained the following new rules [LPAR04]: (NATS(s(s(z0))) -> NATS(s(s(s(z0)))),NATS(s(s(z0))) -> NATS(s(s(s(z0))))) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: NATS(s(s(z0))) -> NATS(s(s(s(z0)))) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = NATS(s(s(z0))) evaluates to t =NATS(s(s(s(z0)))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [z0 / s(z0)] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from NATS(s(s(z0))) to NATS(s(s(s(z0)))). ---------------------------------------- (17) NO ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M) FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M) FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M) R is empty. The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M) FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FILTER(cons(X, Y), s(N), M) -> FILTER(Y, N, M) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *FILTER(cons(X, Y), 0, M) -> FILTER(Y, M, M) The graph contains the following edges 1 > 1, 3 >= 2, 3 >= 3 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N)) SIEVE(cons(0, Y)) -> SIEVE(Y) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) sieve(cons(0, Y)) -> cons(0, sieve(Y)) sieve(cons(s(N), Y)) -> cons(s(N), sieve(filter(Y, N, N))) nats(N) -> cons(N, nats(s(N))) zprimes -> sieve(nats(s(s(0)))) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N)) SIEVE(cons(0, Y)) -> SIEVE(Y) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sieve(cons(0, x0)) sieve(cons(s(x0), x1)) nats(x0) zprimes ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N)) SIEVE(cons(0, Y)) -> SIEVE(Y) The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SIEVE(cons(s(N), Y)) -> SIEVE(filter(Y, N, N)) SIEVE(cons(0, Y)) -> SIEVE(Y) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. SIEVE(x1) = x1 cons(x1, x2) = cons(x2) filter(x1, x2, x3) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) ---------------------------------------- (31) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: filter(cons(X, Y), 0, M) -> cons(0, filter(Y, M, M)) filter(cons(X, Y), s(N), M) -> cons(X, filter(Y, N, M)) The set Q consists of the following terms: filter(cons(x0, x1), 0, x2) filter(cons(x0, x1), s(x2), x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (33) YES