/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR u x y z) (RULES f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ) Problem 1: Innermost Equivalent Processor: -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: F(s(x),0,z,u) -> F(x,u,minus(z,s(x)),u) F(s(x),0,z,u) -> MINUS(z,s(x)) F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) F(s(x),s(y),z,u) -> F(x,u,z,u) F(s(x),s(y),z,u) -> IF(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) F(s(x),s(y),z,u) -> LE(x,y) F(s(x),s(y),z,u) -> MINUS(y,x) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) PERFECTP(s(x)) -> F(x,s(0),s(x),s(x)) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) Problem 1: SCC Processor: -> Pairs: F(s(x),0,z,u) -> F(x,u,minus(z,s(x)),u) F(s(x),0,z,u) -> MINUS(z,s(x)) F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) F(s(x),s(y),z,u) -> F(x,u,z,u) F(s(x),s(y),z,u) -> IF(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) F(s(x),s(y),z,u) -> LE(x,y) F(s(x),s(y),z,u) -> MINUS(y,x) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) PERFECTP(s(x)) -> F(x,s(0),s(x),s(x)) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->->Cycle: ->->-> Pairs: F(s(x),0,z,u) -> F(x,u,minus(z,s(x)),u) F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) F(s(x),s(y),z,u) -> F(x,u,z,u) ->->-> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: F(s(x),0,z,u) -> F(x,u,minus(z,s(x)),u) F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) F(s(x),s(y),z,u) -> F(x,u,z,u) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Projection: pi(F) = 1 Problem 1.3: SCC Processor: -> Pairs: F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) ->->-> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) Problem 1.3: Reduction Pairs Processor: -> Pairs: F(s(x),s(y),z,u) -> F(s(x),minus(y,x),z,u) -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) -> Usable rules: minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [minus](X1,X2) = 2.X1 + 1 [0] = 0 [s](X) = 2.X + 2 [F](X1,X2,X3,X4) = 2.X2 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: f(0,y,0,u) -> true f(0,y,s(z),u) -> false f(s(x),0,z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) if(false,x,y) -> y if(true,x,y) -> x le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),0) -> s(x) minus(s(x),s(y)) -> minus(x,y) perfectp(0) -> false perfectp(s(x)) -> f(x,s(0),s(x),s(x)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.