/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 34 ms] (4) QDP (5) RootLabelingFC2Proof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) MRRProof [EQUIVALENT, 0 ms] (10) QDP (11) SemLabProof [SOUND, 0 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(x, f(y, x)) -> f(f(x, x), f(a, y)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(y, x)) -> F(f(x, x), f(a, y)) F(x, f(y, x)) -> F(x, x) F(x, f(y, x)) -> F(a, y) The TRS R consists of the following rules: f(x, f(y, x)) -> f(f(x, x), f(a, y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(x, f(y, x)) -> F(x, x) F(x, f(y, x)) -> F(a, y) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(f(x_1, x_2)) = [[1A]] + [[1A]] * x_1 + [[1A]] * x_2 >>> <<< POL(a) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(x, f(y, x)) -> f(f(x, x), f(a, y)) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(y, x)) -> F(f(x, x), f(a, y)) The TRS R consists of the following rules: f(x, f(y, x)) -> f(f(x, x), f(a, y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) RootLabelingFC2Proof (EQUIVALENT) We used root labeling (second transformation) [ROOTLAB] with the following heuristic: LabelAll: All function symbols get labeled As Q is empty the root labeling was sound AND complete. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> F_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) F_{f_2,f_2}(x, f_{a,f_2}(y, x)) -> F_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,a}(a, y)) F_{a,f_2}(x, f_{f_2,a}(y, x)) -> F_{f_2,f_2}(f_{a,a}(x, x), f_{a,f_2}(a, y)) F_{a,f_2}(x, f_{a,a}(y, x)) -> F_{f_2,f_2}(f_{a,a}(x, x), f_{a,a}(a, y)) The TRS R consists of the following rules: f_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) f_{f_2,f_2}(x, f_{a,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,a}(a, y)) f_{a,f_2}(x, f_{f_2,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,f_2}(a, y)) f_{a,f_2}(x, f_{a,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,a}(a, y)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> F_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) The TRS R consists of the following rules: f_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) f_{f_2,f_2}(x, f_{a,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,a}(a, y)) f_{a,f_2}(x, f_{f_2,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,f_2}(a, y)) f_{a,f_2}(x, f_{a,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,a}(a, y)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (9) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: f_{a,f_2}(x, f_{f_2,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,f_2}(a, y)) Used ordering: Polynomial interpretation [POLO]: POL(F_{f_2,f_2}(x_1, x_2)) = x_1 + x_2 POL(a) = 0 POL(f_{a,a}(x_1, x_2)) = x_1 + x_2 POL(f_{a,f_2}(x_1, x_2)) = 2*x_1 + x_2 POL(f_{f_2,a}(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(f_{f_2,f_2}(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> F_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) The TRS R consists of the following rules: f_{f_2,f_2}(x, f_{f_2,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,f_2}(a, y)) f_{f_2,f_2}(x, f_{a,f_2}(y, x)) -> f_{f_2,f_2}(f_{f_2,f_2}(x, x), f_{a,a}(a, y)) f_{a,f_2}(x, f_{a,a}(y, x)) -> f_{f_2,f_2}(f_{a,a}(x, x), f_{a,a}(a, y)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 0 f_{a,f_2}: 0 F_{f_2,f_2}: 0 f_{a,a}: 1 f_{f_2,f_2}: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F_{f_2,f_2}.0-0(x, f_{f_2,f_2}.0-0(y, x)) -> F_{f_2,f_2}.0-0(f_{f_2,f_2}.0-0(x, x), f_{a,f_2}.0-0(a., y)) F_{f_2,f_2}.0-0(x, f_{f_2,f_2}.1-0(y, x)) -> F_{f_2,f_2}.0-0(f_{f_2,f_2}.0-0(x, x), f_{a,f_2}.0-1(a., y)) F_{f_2,f_2}.1-0(x, f_{f_2,f_2}.0-1(y, x)) -> F_{f_2,f_2}.0-0(f_{f_2,f_2}.1-1(x, x), f_{a,f_2}.0-0(a., y)) F_{f_2,f_2}.1-0(x, f_{f_2,f_2}.1-1(y, x)) -> F_{f_2,f_2}.0-0(f_{f_2,f_2}.1-1(x, x), f_{a,f_2}.0-1(a., y)) The TRS R consists of the following rules: f_{f_2,f_2}.0-0(x, f_{f_2,f_2}.0-0(y, x)) -> f_{f_2,f_2}.0-0(f_{f_2,f_2}.0-0(x, x), f_{a,f_2}.0-0(a., y)) f_{f_2,f_2}.0-0(x, f_{f_2,f_2}.1-0(y, x)) -> f_{f_2,f_2}.0-0(f_{f_2,f_2}.0-0(x, x), f_{a,f_2}.0-1(a., y)) f_{f_2,f_2}.1-0(x, f_{f_2,f_2}.0-1(y, x)) -> f_{f_2,f_2}.0-0(f_{f_2,f_2}.1-1(x, x), f_{a,f_2}.0-0(a., y)) f_{f_2,f_2}.1-0(x, f_{f_2,f_2}.1-1(y, x)) -> f_{f_2,f_2}.0-0(f_{f_2,f_2}.1-1(x, x), f_{a,f_2}.0-1(a., y)) f_{f_2,f_2}.0-0(x, f_{a,f_2}.0-0(y, x)) -> f_{f_2,f_2}.0-1(f_{f_2,f_2}.0-0(x, x), f_{a,a}.0-0(a., y)) f_{f_2,f_2}.0-0(x, f_{a,f_2}.1-0(y, x)) -> f_{f_2,f_2}.0-1(f_{f_2,f_2}.0-0(x, x), f_{a,a}.0-1(a., y)) f_{f_2,f_2}.1-0(x, f_{a,f_2}.0-1(y, x)) -> f_{f_2,f_2}.0-1(f_{f_2,f_2}.1-1(x, x), f_{a,a}.0-0(a., y)) f_{f_2,f_2}.1-0(x, f_{a,f_2}.1-1(y, x)) -> f_{f_2,f_2}.0-1(f_{f_2,f_2}.1-1(x, x), f_{a,a}.0-1(a., y)) f_{a,f_2}.0-1(x, f_{a,a}.0-0(y, x)) -> f_{f_2,f_2}.1-1(f_{a,a}.0-0(x, x), f_{a,a}.0-0(a., y)) f_{a,f_2}.0-1(x, f_{a,a}.1-0(y, x)) -> f_{f_2,f_2}.1-1(f_{a,a}.0-0(x, x), f_{a,a}.0-1(a., y)) f_{a,f_2}.1-1(x, f_{a,a}.0-1(y, x)) -> f_{f_2,f_2}.1-1(f_{a,a}.1-1(x, x), f_{a,a}.0-0(a., y)) f_{a,f_2}.1-1(x, f_{a,a}.1-1(y, x)) -> f_{f_2,f_2}.1-1(f_{a,a}.1-1(x, x), f_{a,a}.0-1(a., y)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes. ---------------------------------------- (14) TRUE