/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- rm: cannot remove ‘/tmp/muTerm1497983152038664370.in.dec’: No such file or directory rm: cannot remove ‘/tmp/muTerm1497983152038664370.in.form’: No such file or directory YES Problem 1: (VAR x y) (RULES gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ) Problem 1: Innermost Equivalent Processor: -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,x,y) -> GCD(minus(y,x),x) IF_GCD(false,x,y) -> MINUS(y,x) IF_GCD(true,x,y) -> GCD(minus(x,y),y) IF_GCD(true,x,y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1: SCC Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,x,y) -> GCD(minus(y,x),x) IF_GCD(false,x,y) -> MINUS(y,x) IF_GCD(true,x,y) -> GCD(minus(x,y),y) IF_GCD(true,x,y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->->Cycle: ->->-> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,x,y) -> GCD(minus(y,x),x) IF_GCD(true,x,y) -> GCD(minus(x,y),y) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Instantiation Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,x,y) -> GCD(minus(y,x),x) IF_GCD(true,x,y) -> GCD(minus(x,y),y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Instantiated Pairs: ->->Original Pair: IF_GCD(false,x,y) -> GCD(minus(y,x),x) ->-> Instantiated pairs: IF_GCD(false,s(x3),s(x4)) -> GCD(minus(s(x4),s(x3)),s(x3)) ->->Original Pair: IF_GCD(true,x,y) -> GCD(minus(x,y),y) ->-> Instantiated pairs: IF_GCD(true,s(x3),s(x4)) -> GCD(minus(s(x3),s(x4)),s(x4)) Problem 1.3: SCC Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x3),s(x4)) -> GCD(minus(s(x4),s(x3)),s(x3)) IF_GCD(true,s(x3),s(x4)) -> GCD(minus(s(x3),s(x4)),s(x4)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x3),s(x4)) -> GCD(minus(s(x4),s(x3)),s(x3)) IF_GCD(true,s(x3),s(x4)) -> GCD(minus(s(x3),s(x4)),s(x4)) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.3: Narrowing Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x3),s(x4)) -> GCD(minus(s(x4),s(x3)),s(x3)) IF_GCD(true,s(x3),s(x4)) -> GCD(minus(s(x3),s(x4)),s(x4)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Narrowed Pairs: ->->Original Pair: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) ->-> Narrowed pairs: GCD(s(0),s(s(x))) -> IF_GCD(false,s(0),s(s(x))) GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) ->->Original Pair: IF_GCD(false,s(x3),s(x4)) -> GCD(minus(s(x4),s(x3)),s(x3)) ->-> Narrowed pairs: IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) ->->Original Pair: IF_GCD(true,s(x3),s(x4)) -> GCD(minus(s(x3),s(x4)),s(x4)) ->-> Narrowed pairs: IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) Problem 1.3: SCC Processor: -> Pairs: GCD(s(0),s(s(x))) -> IF_GCD(false,s(0),s(s(x))) GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(0),s(s(x))) -> IF_GCD(false,s(0),s(s(x))) GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(0),s(s(x))) -> IF_GCD(false,s(0),s(s(x))) GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [le](X1,X2) = X1 + 2.X2 [minus](X1,X2) = 2.X1 [0] = 2 [false] = 2 [s](X) = 2.X + 1 [true] = 1 [GCD](X1,X2) = 2.X1 + 2.X2 + 2 [IF_GCD](X1,X2,X3) = 2.X2 + 2.X3 Problem 1.3: SCC Processor: -> Pairs: GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(s(y)),s(s(x))) -> IF_GCD(le(x,y),s(s(y)),s(s(x))) GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [le](X1,X2) = 0 [minus](X1,X2) = X1 + 1 [0] = 1 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [GCD](X1,X2) = 2.X1 + X2 + 2 [IF_GCD](X1,X2,X3) = 2.X1 + 2.X2 + X3 + 1 Problem 1.3: SCC Processor: -> Pairs: GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(false,s(y),s(x)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(y),s(0)) -> IF_GCD(true,s(y),s(0)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [minus](X1,X2) = 2.X1 + 1 [0] = 2 [s](X) = 2.X + 2 [true] = 2 [GCD](X1,X2) = 2.X1 + 2.X2 + 2 [IF_GCD](X1,X2,X3) = 2.X2 + 2.X3 + 1 Problem 1.3: SCC Processor: -> Pairs: IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,x,y) -> gcd(minus(y,x),x) if_gcd(true,x,y) -> gcd(minus(x,y),y) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,x) -> 0 minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite.