/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ) Problem 1: Innermost Equivalent Processor: -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: F(s(x)) -> F(x) F(s(x)) -> G(f(x)) F(s(x)) -> MINUS(s(x),g(f(x))) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) G(s(x)) -> MINUS(s(x),f(g(x))) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1: SCC Processor: -> Pairs: F(s(x)) -> F(x) F(s(x)) -> G(f(x)) F(s(x)) -> MINUS(s(x),g(f(x))) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) G(s(x)) -> MINUS(s(x),f(g(x))) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->->Cycle: ->->-> Pairs: F(s(x)) -> F(x) F(s(x)) -> G(f(x)) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) ->->-> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: F(s(x)) -> F(x) F(s(x)) -> G(f(x)) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 2.X + 2 [g](X) = 2.X + 1 [minus](X1,X2) = 2.X1 + 1 [0] = 0 [s](X) = 2.X + 2 [F](X) = X + 2 [G](X) = X + 2 Problem 1.2: SCC Processor: -> Pairs: F(s(x)) -> G(f(x)) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(x)) -> G(f(x)) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) ->->-> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.2: Reduction Pairs Processor: -> Pairs: F(s(x)) -> G(f(x)) G(s(x)) -> F(g(x)) G(s(x)) -> G(x) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 2.X + 2 [g](X) = 2.X [minus](X1,X2) = 2.X1 [0] = 2 [s](X) = 2.X + 2 [F](X) = X + 1 [G](X) = X Problem 1.2: SCC Processor: -> Pairs: G(s(x)) -> F(g(x)) G(s(x)) -> G(x) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(s(x)) -> G(x) ->->-> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1.2: Subterm Processor: -> Pairs: G(s(x)) -> G(x) -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(G) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(0) -> s(0) f(s(x)) -> minus(s(x),g(f(x))) g(0) -> 0 g(s(x)) -> minus(s(x),f(g(x))) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite.