/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 47 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: C(z, x, a) -> F(b(b(f(z), z), x)) C(z, x, a) -> B(b(f(z), z), x) C(z, x, a) -> B(f(z), z) C(z, x, a) -> F(z) B(y, b(z, a)) -> F(b(c(f(a), y, z), z)) B(y, b(z, a)) -> B(c(f(a), y, z), z) B(y, b(z, a)) -> C(f(a), y, z) B(y, b(z, a)) -> F(a) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: C(z, x, a) -> B(b(f(z), z), x) B(y, b(z, a)) -> B(c(f(a), y, z), z) B(y, b(z, a)) -> C(f(a), y, z) C(z, x, a) -> B(f(z), z) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule C(z, x, a) -> B(b(f(z), z), x) we obtained the following new rules [LPAR04]: (C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0),C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0)) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, b(z, a)) -> B(c(f(a), y, z), z) B(y, b(z, a)) -> C(f(a), y, z) C(z, x, a) -> B(f(z), z) C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule C(z, x, a) -> B(f(z), z) we obtained the following new rules [LPAR04]: (C(f(a), y_0, a) -> B(f(f(a)), f(a)),C(f(a), y_0, a) -> B(f(f(a)), f(a))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, b(z, a)) -> B(c(f(a), y, z), z) B(y, b(z, a)) -> C(f(a), y, z) C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0) C(f(a), y_0, a) -> B(f(f(a)), f(a)) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, b(z, a)) -> C(f(a), y, z) C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0) B(y, b(z, a)) -> B(c(f(a), y, z), z) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(f(a), y_0, a) -> B(b(f(f(a)), f(a)), y_0) B(y, b(z, a)) -> B(c(f(a), y, z), z) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( B_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 1} POL( c_3(x_1, ..., x_3) ) = 2x_1 + x_2 POL( a ) = 1 POL( f_1(x_1) ) = max{0, x_1 - 2} POL( b_2(x_1, x_2) ) = x_1 + x_2 POL( C_3(x_1, ..., x_3) ) = 2x_2 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, b(z, a)) -> C(f(a), y, z) The TRS R consists of the following rules: c(z, x, a) -> f(b(b(f(z), z), x)) b(y, b(z, a)) -> f(b(c(f(a), y, z), z)) f(c(c(z, a, a), x, a)) -> z Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (14) TRUE