/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 18 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) NonInfProof [EQUIVALENT, 74 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, l)) -> LENGTH(l) LT(s(x), s(y)) -> LT(x, y) REVERSE(l) -> REV(0, l, nil, l) REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) REV(x, l, accu, orig) -> LT(x, length(orig)) REV(x, l, accu, orig) -> LENGTH(orig) IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) IF(true, x, l, accu, orig) -> TAIL(l) IF(true, x, l, accu, orig) -> HEAD(l) The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LT(s(x), s(y)) -> LT(x, y) The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LT(s(x), s(y)) -> LT(x, y) R is empty. The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: LT(s(x), s(y)) -> LT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LT(s(x), s(y)) -> LT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, l)) -> LENGTH(l) The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, l)) -> LENGTH(l) R is empty. The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, l)) -> LENGTH(l) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(cons(x, l)) -> LENGTH(l) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) The TRS R consists of the following rules: length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) head(cons(x, l)) -> x head(nil) -> undefined tail(nil) -> nil tail(cons(x, l)) -> l reverse(l) -> rev(0, l, nil, l) rev(x, l, accu, orig) -> if(lt(x, length(orig)), x, l, accu, orig) if(true, x, l, accu, orig) -> rev(s(x), tail(l), cons(head(l), accu), orig) if(false, x, l, accu, orig) -> accu The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, l)) -> l head(cons(x, l)) -> x head(nil) -> undefined length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. reverse(x0) rev(x0, x1, x2, x3) if(true, x0, x1, x2, x3) if(false, x0, x1, x2, x3) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, l)) -> l head(cons(x, l)) -> x head(nil) -> undefined length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) the following chains were created: *We consider the chain IF(true, x4, x5, x6, x7) -> REV(s(x4), tail(x5), cons(head(x5), x6), x7), REV(x8, x9, x10, x11) -> IF(lt(x8, length(x11)), x8, x9, x10, x11) which results in the following constraint: (1) (REV(s(x4), tail(x5), cons(head(x5), x6), x7)=REV(x8, x9, x10, x11) ==> REV(x8, x9, x10, x11)_>=_IF(lt(x8, length(x11)), x8, x9, x10, x11)) We simplified constraint (1) using rules (I), (II), (III), (IV) which results in the following new constraint: (2) (REV(s(x4), x9, x10, x7)_>=_IF(lt(s(x4), length(x7)), s(x4), x9, x10, x7)) For Pair IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) the following chains were created: *We consider the chain REV(x12, x13, x14, x15) -> IF(lt(x12, length(x15)), x12, x13, x14, x15), IF(true, x16, x17, x18, x19) -> REV(s(x16), tail(x17), cons(head(x17), x18), x19) which results in the following constraint: (1) (IF(lt(x12, length(x15)), x12, x13, x14, x15)=IF(true, x16, x17, x18, x19) ==> IF(true, x16, x17, x18, x19)_>=_REV(s(x16), tail(x17), cons(head(x17), x18), x19)) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (length(x15)=x24 & lt(x12, x24)=true ==> IF(true, x12, x13, x14, x15)_>=_REV(s(x12), tail(x13), cons(head(x13), x14), x15)) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on lt(x12, x24)=true which results in the following new constraints: (3) (true=true & length(x15)=s(x26) ==> IF(true, 0, x13, x14, x15)_>=_REV(s(0), tail(x13), cons(head(x13), x14), x15)) (4) (lt(x28, x27)=true & length(x15)=s(x27) & (\/x29,x30,x31:lt(x28, x27)=true & length(x29)=x27 ==> IF(true, x28, x30, x31, x29)_>=_REV(s(x28), tail(x30), cons(head(x30), x31), x29)) ==> IF(true, s(x28), x13, x14, x15)_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), x15)) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (length(x15)=s(x26) ==> IF(true, 0, x13, x14, x15)_>=_REV(s(0), tail(x13), cons(head(x13), x14), x15)) We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on length(x15)=s(x27) which results in the following new constraint: (6) (s(length(x37))=s(x27) & lt(x28, x27)=true & (\/x29,x30,x31:lt(x28, x27)=true & length(x29)=x27 ==> IF(true, x28, x30, x31, x29)_>=_REV(s(x28), tail(x30), cons(head(x30), x31), x29)) & (\/x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39) & lt(x40, x39)=true & (\/x41,x42,x43:lt(x40, x39)=true & length(x41)=x39 ==> IF(true, x40, x42, x43, x41)_>=_REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ==> IF(true, s(x40), x44, x45, x37)_>=_REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ==> IF(true, s(x28), x13, x14, cons(x38, x37))_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on length(x15)=s(x26) which results in the following new constraint: (7) (s(length(x32))=s(x26) & (\/x34,x35,x36:length(x32)=s(x34) ==> IF(true, 0, x35, x36, x32)_>=_REV(s(0), tail(x35), cons(head(x35), x36), x32)) ==> IF(true, 0, x13, x14, cons(x33, x32))_>=_REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32))) We simplified constraint (7) using rules (I), (II), (IV) which results in the following new constraint: (8) (IF(true, 0, x13, x14, cons(x33, x32))_>=_REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32))) We simplified constraint (6) using rules (I), (II) which results in the following new constraint: (9) (length(x37)=x27 & lt(x28, x27)=true & (\/x29,x30,x31:lt(x28, x27)=true & length(x29)=x27 ==> IF(true, x28, x30, x31, x29)_>=_REV(s(x28), tail(x30), cons(head(x30), x31), x29)) & (\/x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39) & lt(x40, x39)=true & (\/x41,x42,x43:lt(x40, x39)=true & length(x41)=x39 ==> IF(true, x40, x42, x43, x41)_>=_REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ==> IF(true, s(x40), x44, x45, x37)_>=_REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ==> IF(true, s(x28), x13, x14, cons(x38, x37))_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) We simplified constraint (9) using rule (VI) where we applied the induction hypothesis (\/x29,x30,x31:lt(x28, x27)=true & length(x29)=x27 ==> IF(true, x28, x30, x31, x29)_>=_REV(s(x28), tail(x30), cons(head(x30), x31), x29)) with sigma = [x29 / x37, x30 / x13, x31 / x14] which results in the following new constraint: (10) (IF(true, x28, x13, x14, x37)_>=_REV(s(x28), tail(x13), cons(head(x13), x14), x37) & (\/x39,x40,x41,x42,x43,x44,x45:length(x37)=s(x39) & lt(x40, x39)=true & (\/x41,x42,x43:lt(x40, x39)=true & length(x41)=x39 ==> IF(true, x40, x42, x43, x41)_>=_REV(s(x40), tail(x42), cons(head(x42), x43), x41)) ==> IF(true, s(x40), x44, x45, x37)_>=_REV(s(s(x40)), tail(x44), cons(head(x44), x45), x37)) ==> IF(true, s(x28), x13, x14, cons(x38, x37))_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) We simplified constraint (10) using rule (IV) which results in the following new constraint: (11) (IF(true, x28, x13, x14, x37)_>=_REV(s(x28), tail(x13), cons(head(x13), x14), x37) ==> IF(true, s(x28), x13, x14, cons(x38, x37))_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) To summarize, we get the following constraints P__>=_ for the following pairs. *REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) *(REV(s(x4), x9, x10, x7)_>=_IF(lt(s(x4), length(x7)), s(x4), x9, x10, x7)) *IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) *(IF(true, 0, x13, x14, cons(x33, x32))_>=_REV(s(0), tail(x13), cons(head(x13), x14), cons(x33, x32))) *(IF(true, x28, x13, x14, x37)_>=_REV(s(x28), tail(x13), cons(head(x13), x14), x37) ==> IF(true, s(x28), x13, x14, cons(x38, x37))_>=_REV(s(s(x28)), tail(x13), cons(head(x13), x14), cons(x38, x37))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(IF(x_1, x_2, x_3, x_4, x_5)) = -x_1 - x_2 + x_3 + x_5 POL(REV(x_1, x_2, x_3, x_4)) = -x_1 + x_2 + x_4 POL(c) = -1 POL(cons(x_1, x_2)) = 1 + x_2 POL(false) = 0 POL(head(x_1)) = 0 POL(length(x_1)) = 0 POL(lt(x_1, x_2)) = 0 POL(nil) = 1 POL(s(x_1)) = 1 + x_1 POL(tail(x_1)) = x_1 POL(true) = 0 POL(undefined) = 0 The following pairs are in P_>: IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) The following pairs are in P_bound: IF(true, x, l, accu, orig) -> REV(s(x), tail(l), cons(head(l), accu), orig) The following rules are usable: false -> lt(x, 0) true -> lt(0, s(y)) lt(x, y) -> lt(s(x), s(y)) tail(nil) -> nil tail(cons(x, l)) -> l ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: REV(x, l, accu, orig) -> IF(lt(x, length(orig)), x, l, accu, orig) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, l)) -> l head(cons(x, l)) -> x head(nil) -> undefined length(nil) -> 0 length(cons(x, l)) -> s(length(l)) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) The set Q consists of the following terms: length(nil) length(cons(x0, x1)) lt(x0, 0) lt(0, s(x0)) lt(s(x0), s(x1)) head(cons(x0, x1)) head(nil) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (29) TRUE