/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) TransformationProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPOrderProof [EQUIVALENT, 24 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 46 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 0 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPOrderProof [EQUIVALENT, 14 ms] (28) QDP (29) DependencyGraphProof [EQUIVALENT, 0 ms] (30) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: B(x, y) -> A(c(y), a(0, x)) B(x, y) -> A(0, x) A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule B(x, y) -> A(c(y), a(0, x)) we obtained the following new rules [LPAR04]: (B(y_3, 0) -> A(c(0), a(0, y_3)),B(y_3, 0) -> A(c(0), a(0, y_3))) (B(0, y_0) -> A(c(y_0), a(0, 0)),B(0, y_0) -> A(c(y_0), a(0, 0))) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: B(x, y) -> A(0, x) A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) B(y_3, 0) -> A(c(0), a(0, y_3)) B(0, y_0) -> A(c(y_0), a(0, 0)) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule B(0, y_0) -> A(c(y_0), a(0, 0)) at position [1] we obtained the following new rules [LPAR04]: (B(0, y0) -> A(c(y0), 0),B(0, y0) -> A(c(y0), 0)) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: B(x, y) -> A(0, x) A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) B(y_3, 0) -> A(c(0), a(0, y_3)) B(0, y0) -> A(c(y0), 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) B(x, y) -> A(0, x) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) B(y_3, 0) -> A(c(0), a(0, y_3)) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule B(x, y) -> A(0, x) we obtained the following new rules [LPAR04]: (B(y_3, 0) -> A(0, y_3),B(y_3, 0) -> A(0, y_3)) (B(0, y_0) -> A(0, 0),B(0, y_0) -> A(0, 0)) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) B(0, y_0) -> A(0, 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(c(0), a(0, y_3)) A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) B(y_3, 0) -> A(0, y_3) A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) A(y, c(b(a(0, x), 0))) -> B(0, y) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A(y, c(b(a(0, x), 0))) -> A(c(b(0, y)), x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 1} POL( B_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 1} POL( c_1(x_1) ) = max{0, x_1 - 1} POL( a_2(x_1, x_2) ) = x_1 + x_2 POL( b_2(x_1, x_2) ) = x_1 + x_2 POL( 0 ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) b(x, y) -> c(a(c(y), a(0, x))) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(c(0), a(0, y_3)) A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) B(y_3, 0) -> A(0, y_3) A(y, c(b(a(0, x), 0))) -> B(0, y) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule A(y, c(b(a(0, x), 0))) -> B(a(c(b(0, y)), x), 0) we obtained the following new rules [LPAR04]: (A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0),A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0)) (A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0),A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) A(y, c(b(a(0, x), 0))) -> B(0, y) A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule A(y, c(b(a(0, x), 0))) -> B(0, y) we obtained the following new rules [LPAR04]: (A(c(0), c(b(a(0, x1), 0))) -> B(0, c(0)),A(c(0), c(b(a(0, x1), 0))) -> B(0, c(0))) (A(0, c(b(a(0, x1), 0))) -> B(0, 0),A(0, c(b(a(0, x1), 0))) -> B(0, 0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) A(c(0), c(b(a(0, x1), 0))) -> B(0, c(0)) A(0, c(b(a(0, x1), 0))) -> B(0, 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0) B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) A(0, c(b(a(0, x1), 0))) -> B(0, 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A(0, c(b(a(0, x1), 0))) -> B(0, 0) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A(x_1, x_2)) = [[0A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(c(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(0) = [[0A]] >>> <<< POL(b(x_1, x_2)) = [[1A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(a(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(B(x_1, x_2)) = [[0A]] + [[0A]] * x_1 + [[-I]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0) B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A(c(0), c(b(a(0, x1), 0))) -> B(a(c(b(0, c(0))), x1), 0) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(A(x_1, x_2)) = [[0]] + [[0, 0]] * x_1 + [[1, 0]] * x_2 >>> <<< POL(c(x_1)) = [[0], [0]] + [[0, 1], [0, 0]] * x_1 >>> <<< POL(0) = [[0], [1]] >>> <<< POL(b(x_1, x_2)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 1]] * x_2 >>> <<< POL(a(x_1, x_2)) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 + [[0, 0], [1, 0]] * x_2 >>> <<< POL(B(x_1, x_2)) = [[0]] + [[1, 0]] * x_1 + [[1, 0]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(c(0), a(0, y_3)) B(y_3, 0) -> A(0, y_3) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(0, y_3) A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A(0, c(b(a(0, x1), 0))) -> B(a(c(b(0, 0)), x1), 0) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(B(x_1, x_2)) = [[0]] + [[1, 0]] * x_1 + [[1, 1]] * x_2 >>> <<< POL(0) = [[0], [0]] >>> <<< POL(A(x_1, x_2)) = [[0]] + [[1, 1]] * x_1 + [[1, 0]] * x_2 >>> <<< POL(c(x_1)) = [[0], [0]] + [[0, 1], [0, 0]] * x_1 >>> <<< POL(b(x_1, x_2)) = [[1], [1]] + [[1, 0], [0, 1]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(a(x_1, x_2)) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 + [[1, 0], [1, 0]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: B(y_3, 0) -> A(0, y_3) The TRS R consists of the following rules: b(x, y) -> c(a(c(y), a(0, x))) a(y, x) -> y a(y, c(b(a(0, x), 0))) -> b(a(c(b(0, y)), x), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (30) TRUE