/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 2 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) UsableRulesReductionPairsProof [EQUIVALENT, 7 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) NonInfProof [EQUIVALENT, 0 ms] (29) QDP (30) DependencyGraphProof [EQUIVALENT, 0 ms] (31) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(x, y) -> SUM(generate(x, y)) TIMES(x, y) -> GENERATE(x, y) GENERATE(x, y) -> GEN(x, y, 0) GEN(x, y, z) -> IF(ge(z, x), x, y, z) GEN(x, y, z) -> GE(z, x) IF(false, x, y, z) -> GEN(x, y, s(z)) SUM(cons(0, xs)) -> SUM(xs) SUM(cons(s(x), xs)) -> SUM(cons(x, xs)) GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(s(x), s(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(x), xs)) -> SUM(cons(x, xs)) SUM(cons(0, xs)) -> SUM(xs) The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(x), xs)) -> SUM(cons(x, xs)) SUM(cons(0, xs)) -> SUM(xs) R is empty. The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(x), xs)) -> SUM(cons(x, xs)) SUM(cons(0, xs)) -> SUM(xs) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: SUM(cons(s(x), xs)) -> SUM(cons(x, xs)) SUM(cons(0, xs)) -> SUM(xs) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(SUM(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 2*x_1 ---------------------------------------- (20) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> GEN(x, y, s(z)) GEN(x, y, z) -> IF(ge(z, x), x, y, z) The TRS R consists of the following rules: times(x, y) -> sum(generate(x, y)) generate(x, y) -> gen(x, y, 0) gen(x, y, z) -> if(ge(z, x), x, y, z) if(true, x, y, z) -> nil if(false, x, y, z) -> cons(y, gen(x, y, s(z))) sum(nil) -> 0 sum(cons(0, xs)) -> sum(xs) sum(cons(s(x), xs)) -> s(sum(cons(x, xs))) ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> GEN(x, y, s(z)) GEN(x, y, z) -> IF(ge(z, x), x, y, z) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. times(x0, x1) generate(x0, x1) gen(x0, x1, x2) if(true, x0, x1, x2) if(false, x0, x1, x2) sum(nil) sum(cons(0, x0)) sum(cons(s(x0), x1)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> GEN(x, y, s(z)) GEN(x, y, z) -> IF(ge(z, x), x, y, z) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair IF(false, x, y, z) -> GEN(x, y, s(z)) the following chains were created: *We consider the chain GEN(x3, x4, x5) -> IF(ge(x5, x3), x3, x4, x5), IF(false, x6, x7, x8) -> GEN(x6, x7, s(x8)) which results in the following constraint: (1) (IF(ge(x5, x3), x3, x4, x5)=IF(false, x6, x7, x8) ==> IF(false, x6, x7, x8)_>=_GEN(x6, x7, s(x8))) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (ge(x5, x3)=false ==> IF(false, x3, x4, x5)_>=_GEN(x3, x4, s(x5))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on ge(x5, x3)=false which results in the following new constraints: (3) (false=false ==> IF(false, s(x19), x4, 0)_>=_GEN(s(x19), x4, s(0))) (4) (ge(x21, x20)=false & (\/x22:ge(x21, x20)=false ==> IF(false, x20, x22, x21)_>=_GEN(x20, x22, s(x21))) ==> IF(false, s(x20), x4, s(x21))_>=_GEN(s(x20), x4, s(s(x21)))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (IF(false, s(x19), x4, 0)_>=_GEN(s(x19), x4, s(0))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (\/x22:ge(x21, x20)=false ==> IF(false, x20, x22, x21)_>=_GEN(x20, x22, s(x21))) with sigma = [x22 / x4] which results in the following new constraint: (6) (IF(false, x20, x4, x21)_>=_GEN(x20, x4, s(x21)) ==> IF(false, s(x20), x4, s(x21))_>=_GEN(s(x20), x4, s(s(x21)))) For Pair GEN(x, y, z) -> IF(ge(z, x), x, y, z) the following chains were created: *We consider the chain IF(false, x9, x10, x11) -> GEN(x9, x10, s(x11)), GEN(x12, x13, x14) -> IF(ge(x14, x12), x12, x13, x14) which results in the following constraint: (1) (GEN(x9, x10, s(x11))=GEN(x12, x13, x14) ==> GEN(x12, x13, x14)_>=_IF(ge(x14, x12), x12, x13, x14)) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (GEN(x9, x10, s(x11))_>=_IF(ge(s(x11), x9), x9, x10, s(x11))) To summarize, we get the following constraints P__>=_ for the following pairs. *IF(false, x, y, z) -> GEN(x, y, s(z)) *(IF(false, s(x19), x4, 0)_>=_GEN(s(x19), x4, s(0))) *(IF(false, x20, x4, x21)_>=_GEN(x20, x4, s(x21)) ==> IF(false, s(x20), x4, s(x21))_>=_GEN(s(x20), x4, s(s(x21)))) *GEN(x, y, z) -> IF(ge(z, x), x, y, z) *(GEN(x9, x10, s(x11))_>=_IF(ge(s(x11), x9), x9, x10, s(x11))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(GEN(x_1, x_2, x_3)) = -1 + x_1 + x_2 - x_3 POL(IF(x_1, x_2, x_3, x_4)) = -1 - x_1 + x_2 + x_3 - x_4 POL(c) = -2 POL(false) = 0 POL(ge(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following pairs are in P_>: IF(false, x, y, z) -> GEN(x, y, s(z)) The following pairs are in P_bound: IF(false, x, y, z) -> GEN(x, y, s(z)) The following rules are usable: true -> ge(x, 0) false -> ge(0, s(y)) ge(x, y) -> ge(s(x), s(y)) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: GEN(x, y, z) -> IF(ge(z, x), x, y, z) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (31) TRUE