/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 15 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) MNOCProof [EQUIVALENT, 0 ms] (30) QDP (31) NonLoopProof [COMPLETE, 262 ms] (32) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The TRS R 2 is while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) The signature Sigma is {while_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: WHILE(true, s(s(s(i)))) -> WHILE(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) WHILE(true, s(s(s(i)))) -> GT(s(s(s(i))), s(0)) WHILE(true, s(s(s(i)))) -> F(s(s(s(i)))) F(i) -> IF(neq(i, s(s(0))), i) F(i) -> NEQ(i, s(s(0))) GT(s(x), s(y)) -> GT(x, y) IF(true, i) -> PLUS(i, s(0)) NEQ(s(x), s(y)) -> NEQ(x, y) PLUS(s(x), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, s(y)) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) R is empty. The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: NEQ(s(x), s(y)) -> NEQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *NEQ(s(x), s(y)) -> NEQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: WHILE(true, s(s(s(i)))) -> WHILE(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y The set Q consists of the following terms: while(true, s(s(s(x0)))) f(x0) gt(s(x0), s(x1)) gt(s(x0), 0) gt(0, 0) gt(0, s(x0)) if(true, x0) if(false, x0) neq(s(x0), s(x1)) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) plus(s(x0), x1) plus(0, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: WHILE(true, s(s(s(i)))) -> WHILE(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) The TRS R consists of the following rules: while(true, s(s(s(i)))) -> while(gt(s(s(s(i))), s(0)), f(s(s(s(i))))) f(i) -> if(neq(i, s(s(0))), i) gt(s(x), s(y)) -> gt(x, y) gt(s(x), 0) -> true gt(0, 0) -> false gt(0, s(y)) -> false if(true, i) -> plus(i, s(0)) if(false, i) -> i neq(s(x), s(y)) -> neq(x, y) neq(0, 0) -> false neq(0, s(y)) -> true neq(s(x), 0) -> true plus(s(x), y) -> plus(x, s(y)) plus(0, y) -> y Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (31) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [ ], and μ' = [ ] on the rule WHILE(true, s(s(s(s(zr0)))))[zr0 / s(zr0)]^n[zr0 / 0] -> WHILE(true, s(s(s(s(s(zr0))))))[zr0 / s(zr0)]^n[zr0 / 0] This rule is correct for the QDP as the following derivation shows: WHILE(true, s(s(s(s(zr0)))))[zr0 / s(zr0)]^n[zr0 / 0] -> WHILE(true, s(s(s(s(s(zr0))))))[zr0 / s(zr0)]^n[zr0 / 0] by Equivalence by Domain Renaming of the lhs with [zl0 / zr0] intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) WHILE(true, s(s(s(s(zl1)))))[zr1 / s(zr1), zl1 / s(zl1)]^n[zr1 / 0, zl1 / 0] -> WHILE(true, s(s(s(s(s(zr1))))))[zr1 / s(zr1), zl1 / s(zl1)]^n[zr1 / 0, zl1 / 0] by Narrowing at position: [1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) WHILE(true, s(s(s(s(zs1)))))[zt1 / s(zt1), zs1 / s(zs1)]^n[zt1 / 0, zs1 / y1] -> WHILE(true, plus(y1, s(s(s(s(s(zt1)))))))[zt1 / s(zt1), zs1 / s(zs1)]^n[zt1 / 0, zs1 / y1] by Narrowing at position: [1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation WHILE(true, s(s(s(i))))[ ]^n[ ] -> WHILE(true, plus(i, s(s(s(s(0))))))[ ]^n[ ] by Rewrite t with the rewrite sequence : [([0],gt(s(x), s(y)) -> gt(x, y)), ([0],gt(s(x), 0) -> true), ([1],f(i) -> if(neq(i, s(s(0))), i)), ([1,0],neq(s(x), s(y)) -> neq(x, y)), ([1,0],neq(s(x), s(y)) -> neq(x, y)), ([1,0],neq(s(x), 0) -> true), ([1],if(true, i) -> plus(i, s(0))), ([1],plus(s(x), y) -> plus(x, s(y))), ([1],plus(s(x), y) -> plus(x, s(y))), ([1],plus(s(x), y) -> plus(x, s(y)))] WHILE(true, s(s(s(i))))[ ]^n[ ] -> WHILE(gt(s(s(s(i))), s(0)), f(s(s(s(i)))))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv Smu (rhs) - Instantiation - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) plus(s(x), y)[x / s(x)]^n[ ] -> plus(x, s(y))[y / s(y)]^n[ ] by PatternCreation I with delta: [ ], theta: [y / s(y)], sigma: [x / s(x)] plus(s(x), y)[ ]^n[ ] -> plus(x, s(y))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation plus(0, y)[ ]^n[ ] -> y[ ]^n[ ] by Rule from TRS R ---------------------------------------- (32) NO