/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. a : [] --> o active : [o] --> o c : [o] --> o f : [o] --> o g : [o] --> o mark : [o] --> o ok : [o] --> o proper : [o] --> o top : [o] --> o active(f(f(a))) => mark(c(f(g(f(a))))) active(f(X)) => f(active(X)) active(g(X)) => g(active(X)) f(mark(X)) => mark(f(X)) g(mark(X)) => mark(g(X)) proper(f(X)) => f(proper(X)) proper(a) => ok(a) proper(c(X)) => c(proper(X)) proper(g(X)) => g(proper(X)) f(ok(X)) => ok(f(X)) c(ok(X)) => ok(c(X)) g(ok(X)) => ok(g(X)) top(mark(X)) => top(proper(X)) top(ok(X)) => top(active(X)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] active#(f(f(a))) =#> c#(f(g(f(a)))) 1] active#(f(f(a))) =#> f#(g(f(a))) 2] active#(f(f(a))) =#> g#(f(a)) 3] active#(f(f(a))) =#> f#(a) 4] active#(f(X)) =#> f#(active(X)) 5] active#(f(X)) =#> active#(X) 6] active#(g(X)) =#> g#(active(X)) 7] active#(g(X)) =#> active#(X) 8] f#(mark(X)) =#> f#(X) 9] g#(mark(X)) =#> g#(X) 10] proper#(f(X)) =#> f#(proper(X)) 11] proper#(f(X)) =#> proper#(X) 12] proper#(c(X)) =#> c#(proper(X)) 13] proper#(c(X)) =#> proper#(X) 14] proper#(g(X)) =#> g#(proper(X)) 15] proper#(g(X)) =#> proper#(X) 16] f#(ok(X)) =#> f#(X) 17] c#(ok(X)) =#> c#(X) 18] g#(ok(X)) =#> g#(X) 19] top#(mark(X)) =#> top#(proper(X)) 20] top#(mark(X)) =#> proper#(X) 21] top#(ok(X)) =#> top#(active(X)) 22] top#(ok(X)) =#> active#(X) Rules R_0: active(f(f(a))) => mark(c(f(g(f(a))))) active(f(X)) => f(active(X)) active(g(X)) => g(active(X)) f(mark(X)) => mark(f(X)) g(mark(X)) => mark(g(X)) proper(f(X)) => f(proper(X)) proper(a) => ok(a) proper(c(X)) => c(proper(X)) proper(g(X)) => g(proper(X)) f(ok(X)) => ok(f(X)) c(ok(X)) => ok(c(X)) g(ok(X)) => ok(g(X)) top(mark(X)) => top(proper(X)) top(ok(X)) => top(active(X)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 17 * 1 : 8, 16 * 2 : 9, 18 * 3 : * 4 : 8, 16 * 5 : 0, 1, 2, 3, 4, 5, 6, 7 * 6 : 9, 18 * 7 : 0, 1, 2, 3, 4, 5, 6, 7 * 8 : 8, 16 * 9 : 9, 18 * 10 : 8, 16 * 11 : 10, 11, 12, 13, 14, 15 * 12 : 17 * 13 : 10, 11, 12, 13, 14, 15 * 14 : 9, 18 * 15 : 10, 11, 12, 13, 14, 15 * 16 : 8, 16 * 17 : 17 * 18 : 9, 18 * 19 : 19, 20, 21, 22 * 20 : 10, 11, 12, 13, 14, 15 * 21 : 19, 20, 21, 22 * 22 : 0, 1, 2, 3, 4, 5, 6, 7 This graph has the following strongly connected components: P_1: active#(f(X)) =#> active#(X) active#(g(X)) =#> active#(X) P_2: f#(mark(X)) =#> f#(X) f#(ok(X)) =#> f#(X) P_3: g#(mark(X)) =#> g#(X) g#(ok(X)) =#> g#(X) P_4: proper#(f(X)) =#> proper#(X) proper#(c(X)) =#> proper#(X) proper#(g(X)) =#> proper#(X) P_5: c#(ok(X)) =#> c#(X) P_6: top#(mark(X)) =#> top#(proper(X)) top#(ok(X)) =#> top#(active(X)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f), (P_2, R_0, m, f), (P_3, R_0, m, f), (P_4, R_0, m, f), (P_5, R_0, m, f) and (P_6, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_6, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_0, minimal, formative). The formative rules of (P_6, R_0) are R_1 ::= active(f(f(a))) => mark(c(f(g(f(a))))) active(f(X)) => f(active(X)) active(g(X)) => g(active(X)) f(mark(X)) => mark(f(X)) g(mark(X)) => mark(g(X)) proper(f(X)) => f(proper(X)) proper(a) => ok(a) proper(c(X)) => c(proper(X)) proper(g(X)) => g(proper(X)) f(ok(X)) => ok(f(X)) c(ok(X)) => ok(c(X)) g(ok(X)) => ok(g(X)) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_6, R_0, minimal, formative) by (P_6, R_1, minimal, formative). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_6, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_6, R_1, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: top#(mark(X)) >? top#(proper(X)) top#(ok(X)) >? top#(active(X)) active(f(f(a))) >= mark(c(f(g(f(a))))) active(f(X)) >= f(active(X)) active(g(X)) >= g(active(X)) f(mark(X)) >= mark(f(X)) g(mark(X)) >= mark(g(X)) proper(f(X)) >= f(proper(X)) proper(a) >= ok(a) proper(c(X)) >= c(proper(X)) proper(g(X)) >= g(proper(X)) f(ok(X)) >= ok(f(X)) c(ok(X)) >= ok(c(X)) g(ok(X)) >= ok(g(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a = 1 active = \y0.y0 c = \y0.0 f = \y0.2y0 g = \y0.y0 mark = \y0.1 + 2y0 ok = \y0.y0 proper = \y0.y0 top# = \y0.2y0 Using this interpretation, the requirements translate to: [[top#(mark(_x0))]] = 2 + 4x0 > 2x0 = [[top#(proper(_x0))]] [[top#(ok(_x0))]] = 2x0 >= 2x0 = [[top#(active(_x0))]] [[active(f(f(a)))]] = 4 >= 1 = [[mark(c(f(g(f(a)))))]] [[active(f(_x0))]] = 2x0 >= 2x0 = [[f(active(_x0))]] [[active(g(_x0))]] = x0 >= x0 = [[g(active(_x0))]] [[f(mark(_x0))]] = 2 + 4x0 >= 1 + 4x0 = [[mark(f(_x0))]] [[g(mark(_x0))]] = 1 + 2x0 >= 1 + 2x0 = [[mark(g(_x0))]] [[proper(f(_x0))]] = 2x0 >= 2x0 = [[f(proper(_x0))]] [[proper(a)]] = 1 >= 1 = [[ok(a)]] [[proper(c(_x0))]] = 0 >= 0 = [[c(proper(_x0))]] [[proper(g(_x0))]] = x0 >= x0 = [[g(proper(_x0))]] [[f(ok(_x0))]] = 2x0 >= 2x0 = [[ok(f(_x0))]] [[c(ok(_x0))]] = 0 >= 0 = [[ok(c(_x0))]] [[g(ok(_x0))]] = x0 >= x0 = [[ok(g(_x0))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_6, R_1, minimal, formative) by (P_7, R_1, minimal, formative), where P_7 consists of: top#(ok(X)) =#> top#(active(X)) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_7, R_1, minimal, formative) is finite. We consider the dependency pair problem (P_7, R_1, minimal, formative). The formative rules of (P_7, R_1) are R_2 ::= active(f(X)) => f(active(X)) active(g(X)) => g(active(X)) proper(f(X)) => f(proper(X)) proper(a) => ok(a) proper(c(X)) => c(proper(X)) proper(g(X)) => g(proper(X)) f(ok(X)) => ok(f(X)) c(ok(X)) => ok(c(X)) g(ok(X)) => ok(g(X)) By [Kop12, Thm. 7.17], we may replace the dependency pair problem (P_7, R_1, minimal, formative) by (P_7, R_2, minimal, formative). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative), (P_5, R_0, minimal, formative) and (P_7, R_2, minimal, formative) is finite. We consider the dependency pair problem (P_7, R_2, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_7, R_2) are: active(f(X)) => f(active(X)) active(g(X)) => g(active(X)) f(ok(X)) => ok(f(X)) g(ok(X)) => ok(g(X)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: top#(ok(X)) >? top#(active(X)) active(f(X)) >= f(active(X)) active(g(X)) >= g(active(X)) f(ok(X)) >= ok(f(X)) g(ok(X)) >= ok(g(X)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: active = \y0.0 f = \y0.y0 g = \y0.y0 ok = \y0.3 + 3y0 top# = \y0.3y0 Using this interpretation, the requirements translate to: [[top#(ok(_x0))]] = 9 + 9x0 > 0 = [[top#(active(_x0))]] [[active(f(_x0))]] = 0 >= 0 = [[f(active(_x0))]] [[active(g(_x0))]] = 0 >= 0 = [[g(active(_x0))]] [[f(ok(_x0))]] = 3 + 3x0 >= 3 + 3x0 = [[ok(f(_x0))]] [[g(ok(_x0))]] = 3 + 3x0 >= 3 + 3x0 = [[ok(g(_x0))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_7, R_2) by ({}, R_2). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative), (P_4, R_0, minimal, formative) and (P_5, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_5, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(c#) = 1 Thus, we can orient the dependency pairs as follows: nu(c#(ok(X))) = ok(X) |> X = nu(c#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_5, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative), (P_3, R_0, minimal, formative) and (P_4, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_4, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(proper#) = 1 Thus, we can orient the dependency pairs as follows: nu(proper#(f(X))) = f(X) |> X = nu(proper#(X)) nu(proper#(c(X))) = c(X) |> X = nu(proper#(X)) nu(proper#(g(X))) = g(X) |> X = nu(proper#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_4, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative), (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(g#) = 1 Thus, we can orient the dependency pairs as follows: nu(g#(mark(X))) = mark(X) |> X = nu(g#(X)) nu(g#(ok(X))) = ok(X) |> X = nu(g#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(f#) = 1 Thus, we can orient the dependency pairs as follows: nu(f#(mark(X))) = mark(X) |> X = nu(f#(X)) nu(f#(ok(X))) = ok(X) |> X = nu(f#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(active#) = 1 Thus, we can orient the dependency pairs as follows: nu(active#(f(X))) = f(X) |> X = nu(active#(X)) nu(active#(g(X))) = g(X) |> X = nu(active#(X)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.