/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x y) (RULES gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ) Problem 1: Innermost Equivalent Processor: -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(false,s(x),s(y)) -> MINUS(y,x) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x Problem 1: SCC Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(false,s(x),s(y)) -> MINUS(y,x) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->->Cycle: ->->-> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x -> Usable rules: le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [le](X1,X2) = 2.X2 + 2 [minus](X1,X2) = X1 + 1 [0] = 0 [false] = 2 [s](X) = 2.X + 2 [true] = 2 [GCD](X1,X2) = 2.X1 + X2 + 2 [IF_GCD](X1,X2,X3) = X2 + X3 + 2 Problem 1.3: SCC Processor: -> Pairs: IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Strongly Connected Components: There is no strongly connected component The problem is finite.