/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 4 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) MNOCProof [EQUIVALENT, 0 ms] (30) QDP (31) NonLoopProof [COMPLETE, 12.0 s] (32) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The TRS R 2 is f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) The signature Sigma is {f_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) F(true, xs) -> EQ(s(length(xs)), length(cons(a, xs))) F(true, xs) -> LENGTH(xs) F(true, xs) -> LENGTH(cons(a, xs)) F(true, xs) -> APPEND(cons(b, nil), xs) LENGTH(cons(x, xs)) -> LENGTH(xs) EQ(s(x), s(y)) -> EQ(x, y) APPEND(cons(x, xs), ys) -> APPEND(xs, ys) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) R is empty. The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND(cons(x, xs), ys) -> APPEND(xs, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND(cons(x, xs), ys) -> APPEND(xs, ys) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, xs)) -> LENGTH(xs) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, xs)) -> LENGTH(xs) R is empty. The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(cons(x, xs)) -> LENGTH(xs) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(cons(x, xs)) -> LENGTH(xs) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) The set Q consists of the following terms: f(true, x0) length(nil) length(cons(x0, x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) append(nil, x0) append(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, xs) -> F(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) The TRS R consists of the following rules: f(true, xs) -> f(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs)) length(nil) -> 0 length(cons(x, xs)) -> s(length(xs)) eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(y)) -> false eq(s(x), s(y)) -> eq(x, y) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (31) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [ ], and μ' = [ ] on the rule F(true, cons(b, zr1))[zr1 / cons(b, zr1)]^n[zr1 / nil] -> F(true, cons(b, cons(b, zr1)))[zr1 / cons(b, zr1)]^n[zr1 / nil] This rule is correct for the QDP as the following derivation shows: F(true, cons(b, zr1))[zr1 / cons(b, zr1)]^n[zr1 / nil] -> F(true, cons(b, cons(b, zr1)))[zr1 / cons(b, zr1)]^n[zr1 / nil] by Equivalence by Domain Renaming of the lhs with [zl0 / zr1] intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) F(true, cons(x1, zl1))[zl1 / cons(x1, zl1)]^n[zl1 / nil] -> F(true, cons(b, cons(x1, zr1)))[zr1 / cons(x1, zr1)]^n[zr1 / nil] by Rewrite t with the rewrite sequence : [([0,1],length(nil) -> 0), ([0],eq(0, 0) -> true), ([1],append(cons(x, xs), ys) -> cons(x, append(xs, ys))), ([1,1],append(nil, ys) -> ys)] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) F(true, cons(x1, zl1))[zr1 / cons(x1, zr1), zl1 / cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] -> F(eq(0, length(nil)), append(cons(b, nil), cons(x1, zr1)))[zr1 / cons(x1, zr1), zl1 / cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] by Narrowing at position: [0,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv Smu (rhs) - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, cons(x1, zl1))[zr2 / s(zr2), zr3 / cons(x1, zr3), zr5 / s(zr5), zl1 / cons(x1, zl1)]^n[zr2 / length(x0), zr3 / x0, zr5 / length(x0), y1 / length(x0), y0 / length(x0), zl1 / x0] -> F(eq(y1, y0), append(cons(b, nil), cons(x1, zr3)))[zr2 / s(zr2), zr3 / cons(x1, zr3), zr5 / s(zr5), zl1 / cons(x1, zl1)]^n[zr2 / length(x0), zr3 / x0, zr5 / length(x0), y1 / length(x0), y0 / length(x0), zl1 / x0] by Narrowing at position: [0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, cons(x1, zl1))[zr2 / s(zr2), zr3 / cons(x1, zr3), zt1 / s(zt1), zl1 / cons(x1, zl1)]^n[zr2 / length(y1), zr3 / y1, zt1 / length(y1), zl1 / y1, x0 / y1] -> F(eq(s(s(zr2)), s(s(zt1))), append(cons(b, nil), cons(x1, zr3)))[zr2 / s(zr2), zr3 / cons(x1, zr3), zt1 / s(zt1), zl1 / cons(x1, zl1)]^n[zr2 / length(y1), zr3 / y1, zt1 / length(y1), zl1 / y1, x0 / y1] by Narrowing at position: [0,1,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, cons(x1, zl1))[zr2 / s(zr2), zr3 / cons(x1, zr3), zl1 / cons(x1, zl1)]^n[zr2 / length(x0), zr3 / x0, zl1 / x0] -> F(eq(s(s(zr2)), s(length(cons(x1, zr3)))), append(cons(b, nil), cons(x1, zr3)))[zr2 / s(zr2), zr3 / cons(x1, zr3), zl1 / cons(x1, zl1)]^n[zr2 / length(x0), zr3 / x0, zl1 / x0] by Narrowing at position: [0,1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (lhs) F(true, cons(y0, zs1))[zt1 / s(zt1), zs1 / cons(y0, zs1)]^n[zt1 / length(y1), zs1 / y1] -> F(eq(s(s(zt1)), length(cons(a, cons(y0, zs1)))), append(cons(b, nil), cons(y0, zs1)))[zt1 / s(zt1), zs1 / cons(y0, zs1)]^n[zt1 / length(y1), zs1 / y1] by Narrowing at position: [0,0,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation F(true, xs)[ ]^n[ ] -> F(eq(s(length(xs)), length(cons(a, xs))), append(cons(b, nil), xs))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) length(cons(x, xs))[xs / cons(x, xs)]^n[ ] -> s(z)[xs / cons(x, xs), z / s(z)]^n[z / length(xs)] by PatternCreation II with pi: [0], sigma: [xs / cons(x, xs)] length(cons(x, xs))[ ]^n[ ] -> s(length(xs))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation - Instantiation - Instantiation length(cons(x, xs))[ ]^n[ ] -> s(length(xs))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (lhs) - Instantiation - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) length(cons(x, xs))[xs / cons(x, xs)]^n[ ] -> s(z)[xs / cons(x, xs), z / s(z)]^n[z / length(xs)] by PatternCreation II with pi: [0], sigma: [xs / cons(x, xs)] length(cons(x, xs))[ ]^n[ ] -> s(length(xs))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (lhs) - Equiv DR (lhs) - Expand Sigma - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) eq(s(x), s(y))[x / s(x), y / s(y)]^n[ ] -> eq(x, y)[ ]^n[ ] by PatternCreation I with delta: [ ], theta: [ ], sigma: [x / s(x), y / s(y)] eq(s(x), s(y))[ ]^n[ ] -> eq(x, y)[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) length(nil)[ ]^n[ ] -> 0[ ]^n[ ] by Rule from TRS R ---------------------------------------- (32) NO